#P9510. Fibonacci Sum Function Challenge
Fibonacci Sum Function Challenge
Fibonacci Sum Function Challenge
Given the Fibonacci sequence defined as follows:
\[ \operatorname{fib}(n)=\begin{cases}1&\text{if } n\le 2\\\operatorname{fib}(n-1)+\operatorname{fib}(n-2)&\text{if } n>2 \end{cases} \]
We further define a function (note that for \(n<1\), the value is \(0\)):
\[ f(n)=\sum_{i=1}^n \operatorname{fib}^2(i) \]
Your task is to compute the following sum modulo \(p\):
\[ S=\sum_{i=1}^n \operatorname{fib}(i)\cdot\Bigl(f(i-2)+\operatorname{fib}^2(i)+\operatorname{fib}(i)\Bigr) \pmod{p} \]
Note: \(\operatorname{fib}^2(x)\) stands for \((\operatorname{fib}(x))^2\), and by definition \(f(n)=0\) for \(n<1\).
inputFormat
The input consists of two space-separated integers \(n\) and \(p\) on a single line:
- \(n\): the number of terms in the series.
- \(p\): the modulus.
outputFormat
Output a single integer representing the value of \(S\) modulo \(p\).
sample
1 100
2