#P8869. Sign Transfer Function

    ID: 22033 Type: Default 1000ms 256MiB

Sign Transfer Function

Sign Transfer Function

Given two integers \(a\) and \(b\) (with \(b \neq 0\)), implement a function \(\operatorname{fun}(a, b)\) that transfers the sign of \(b\) to \(a\). The function is defined as:

\[ \operatorname{fun}(a, b) = \operatorname{sgn}(b) \times |a| \]

where \(\operatorname{sgn}(b)\) is defined as:

\[ \operatorname{sgn}(b)=\begin{cases}1 & \text{if } b>0\\ -1 & \text{if } b<0\end{cases} \]

In other words:

  • If \(b\) is positive, then \(\operatorname{fun}(a, b)=|a|\).
  • If \(b\) is negative, then \(\operatorname{fun}(a, b)=-|a|\).

inputFormat

The input consists of two space-separated integers \(a\) and \(b\) (\(b \neq 0\)).

outputFormat

Output the result of \(\operatorname{fun}(a, b)\) which is an integer.

sample

3 2
3