#P6745. Restore Special Number
Restore Special Number
Restore Special Number
Everyday life sometimes presents us with special numbers in a compact format. For example, the number \(10^9+7\) is more readable than writing out \(1000000007\) directly. In this problem, you are given a number in the form \(10^{k}+x\). Your task is to restore it to its usual decimal notation.
The input provides two integers \(k\) and \(x\) such that the number is represented as \(10^{k}+x\). It is guaranteed that \(0 \le x < 10^{k}\). Print the resulting number in its standard format without using scientific notation.
inputFormat
The input consists of a single line containing two space-separated integers:
k
: a non-negative integer representing the exponent in \(10^{k}\).x
: an integer where \(0 \le x < 10^{k}\).
outputFormat
Output a single line containing the usual decimal representation of the number \(10^{k}+x\).
sample
9 7
1000000007