#P5408. Stirling Numbers of the First Kind
Stirling Numbers of the First Kind
Stirling Numbers of the First Kind
Given an integer \(n\), compute the unsigned Stirling numbers of the first kind \(\begin{bmatrix} n \\ i \end{bmatrix}\) for all integers \(i\) in the range \([0, n]\). The Stirling number \(\begin{bmatrix} n \\ m \end{bmatrix}\) represents the number of ways to arrange \(n\) distinct elements into \(m\) circular permutations.
Note that by convention, \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1\), and when \(n > 0\) we have \(\begin{bmatrix} n \\ 0 \end{bmatrix} = 0\).
Since the answers can be extremely large, output each answer modulo 167772161 (which is \(2^{25}\times5+1\) and is prime).
The recurrence relation for \(n \ge 1\) and \(1 \le m \le n\) is:
\[ \begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} n-1 \\ m-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ m \end{bmatrix} \]inputFormat
The input consists of a single integer \(n\) where \(0 \le n\).
outputFormat
Output \(n+1\) integers separated by spaces: \(\begin{bmatrix} n \\ 0 \end{bmatrix}\), \(\begin{bmatrix} n \\ 1 \end{bmatrix}\), ..., \(\begin{bmatrix} n \\ n \end{bmatrix}\) computed modulo 167772161.
sample
0
1