#P3846. Discrete Logarithm Problem
Discrete Logarithm Problem
Discrete Logarithm Problem
Given a prime number \(p\), an integer \(b\), and an integer \(n\), find the smallest non-negative integer \(l\) such that:
$$b^l \equiv n \pmod{p}$$
If no such \(l\) exists, output -1.
inputFormat
The input consists of a single line containing three space-separated integers: \(p\), \(b\), and \(n\), where \(p\) is a prime number.
outputFormat
Output a single integer: the smallest non-negative integer \(l\) satisfying $$b^l \equiv n \pmod{p}$$. If no such integer exists, output -1.
sample
7 3 6
3