#P3611. Cowpelia Dance Show
Cowpelia Dance Show
Cowpelia Dance Show
After several months of rehearsal, the cows are just about ready to put on their annual dance performance; this year they are performing the famous bovine ballet "Cowpelia".
The only aspect of the show that remains to be determined is the size of the stage. A stage of size \(K\) can support \(K\) cows dancing simultaneously. The \(N\) cows in the herd (\(1 \le N \le 10\,000\)) are conveniently numbered \(1 \ldots N\) in the order in which they must appear in the dance. Each cow \(i\) plans to dance for a specific duration of time \(d(i)\). Initially, cows \(1 \ldots K\) appear on stage and start dancing. When the first of these cows completes her part, she leaves the stage and cow \(K+1\) immediately starts dancing, and so on, so there are always \(K\) cows dancing (until the end of the show, when we start to run out of cows). The show ends when the last cow completes her dancing part, at time \(T\).
Clearly, the larger the value of \(K\), the smaller the value of \(T\). Since the show cannot last too long, you are given as input an upper bound \(T_{max}\) specifying the largest possible value of \(T\). Subject to this constraint, please determine the smallest possible value of \(K\) such that \(T \le T_{max}\).
inputFormat
The first line of input contains two space-separated integers \(N\) and \(T_{max}\). \(N\) is the number of cows and \(T_{max}\) is the maximum allowed time for the show.
The following \(N\) lines each contain a single integer \(d(i)\), representing the duration that cow \(i\) will dance.
outputFormat
Output a single integer representing the smallest stage size \(K\) for which the final finishing time \(T\) does not exceed \(T_{max}\).
sample
5 8
4
7
8
6
4
4