#P3601. Check-in Challenge: Counting Non-Coprime Numbers
Check-in Challenge: Counting Non-Coprime Numbers
Check-in Challenge: Counting Non-Coprime Numbers
We define a function \(\operatorname{qiandao}(x)\) as the number of integers \(n\) (with \(1 \le n \le x\)) that are not coprime with \(x\). In other words,
\[ \operatorname{qiandao}(x) = x - \varphi(x), \]
where \(\varphi(x)\) is Euler's totient function.
This is a simple check-in problem. Given two integers \(l\) and \(r\), compute:
\[ S = \sum_{i=l}^{r} \operatorname{qiandao}(i) \bmod 666623333. \]
Please note that all formulas are rendered using LaTeX.
inputFormat
The input consists of a single line containing two space-separated integers \(l\) and \(r\) (with \(1 \le l \le r\)).
For example:
1 3
outputFormat
Output a single integer: the value of \(S = \sum_{i=l}^{r} \operatorname{qiandao}(i) \bmod 666623333\).
For example, for the input above, the output should be
2
sample
1 1
0