#P1883. Minimizing the Maximum of Quadratic Functions
Minimizing the Maximum of Quadratic Functions
Minimizing the Maximum of Quadratic Functions
Given n quadratic functions \(f_1(x), f_2(x), \dots, f_n(x)\) (each of the form \(ax^2+bx+c\)), define \(F(x)=\max\{f_1(x), f_2(x), \dots, f_n(x)\}\). Find the minimum value of \(F(x)\) on the interval \([0, 1000]\).
You are required to output the minimum value with 6 digits after the decimal point.
inputFormat
The first line contains an integer n denoting the number of quadratic functions. Each of the next n lines contains three space-separated real numbers a, b, and c representing the coefficients of a quadratic function \(ax^2+bx+c\).
outputFormat
Output the minimum value of \(F(x)\) on the interval \([0,1000]\) with exactly 6 digits after the decimal point.
sample
1
1 0 0
0.000000