#P1614. Minimum Contiguous Subarray Sum
Minimum Contiguous Subarray Sum
Minimum Contiguous Subarray Sum
Given n events each with a positive integer "pain value", and a positive integer m, find the minimum sum of any contiguous subarray of length m. In other words, given an array \(A_1, A_2, \dots, A_n\), compute:
\(\min_{1 \leq i \leq n-m+1} \sum_{j=i}^{i+m-1}{A_j}\)
inputFormat
The input contains two lines:
- The first line contains two space-separated integers n and m (1 ≤ m ≤ n ≤ 105).
- The second line contains n positive integers representing the pain values, each is at most 109.
outputFormat
Output a single integer representing the minimum sum of any contiguous subarray of length m.
sample
5 2
3 2 1 2 3
3
</p>