#P11961. Primitive Root Check
Primitive Root Check
Primitive Root Check
Given a prime number p, an integer g is called a primitive root modulo p if it satisfies the following conditions:
-
1 < g < p
- \(g^{p-1} \equiv 1 \pmod{p}\)
- For every integer \(1 \le i < p-1\), \(g^i \not\equiv 1 \pmod{p}\).
Given two integers p and a where p is prime, determine whether a is a primitive root modulo p.
inputFormat
The input consists of one line containing two integers p and a, where p is a prime number and a is the integer to be tested.
outputFormat
Output Yes if a is a primitive root modulo p, otherwise output No.
sample
5 2
Yes