#P1013. L-K-V-E Base-4 Addition
L-K-V-E Base-4 Addition
L-K-V-E Base-4 Addition
A famous scientist, Lus, devised an addition table using the letters L, K, V, and E to represent digits. The table is given as follows:
$$\def\arraystretch{2} \begin{array}{c||c|c|c|c} \rm + & \kern{.5cm} \rm \mathclap{L} \kern{.5cm} & \kern{.5cm} \rm \mathclap{K} \kern{.5cm} & \kern{.5cm} \rm \mathclap{V} \kern{.5cm} & \kern{.5cm} \rm \mathclap{E} \kern{.5cm} \\ \hline\hline \rm L & \rm L & \rm K & \rm V & \rm E \\ \hline \rm K & \rm K & \rm V & \rm E & \rm \mathclap{KL} \\ \hline \rm V & \rm V & \rm E & \rm \mathclap{KL} & \rm \mathclap{KK} \\ \hline \rm E & \rm E & \rm \mathclap{KL} & \rm \mathclap{KK} & \rm \mathclap{KV} \\ \end{array} $$This table implies the following rules:
- $L+L = L$, $L+K = K$, $L+V = V$, $L+E = E$
- $K+L = K$, $K+K = V$, $K+V = E$, $K+E = KL$
- ... (and so on)
- $E+E = KV$
From these rules, we can deduce that:
Moreover, the table represents addition in base-4.
Your task is to perform addition of two numbers given in this unusual representation.
Note: When representing numbers, use the following mapping:
- L: 0
- K: 1
- V: 2
- E: 3
You must add the two numbers (which are provided in this letter-based notation) as base-4 numbers, and output the result in the same format (with no extra leading L unless the result is zero).
inputFormat
The input consists of two tokens separated by whitespace. Each token is a non-empty string that represents a non-negative base-4 number using the characters L, K, V, and E.
For example:
KV E
represents the numbers corresponding to 6 (since KV in base-4 is 1*4 + 2 = 6) and 3 respectively.
outputFormat
Output a single token: the sum of the two input numbers, expressed in the same L-K-V-E representation.
sample
K V
E