#K79147. Zero Sum Subarray
Zero Sum Subarray
Zero Sum Subarray
Given a sequence of n integers, determine whether there exists a contiguous subarray whose sum equals zero. In other words, check if there exists indices \(l\) and \(r\) such that
$$\sum_{i=l}^{r} a_i = 0$$
If such a subarray exists, output YES
; otherwise, output NO
.
Hint: Use the prefix sum technique. If at any point the prefix sum becomes zero or repeats a previous value, a zero-sum subarray exists.
inputFormat
The first line contains an integer n
(
1 ≤ n), the number of elements in the sequence.
The second line contains n
space-separated integers, which are the elements of the array.
outputFormat
Output a single line containing YES
if there exists a contiguous subarray whose sum is zero, otherwise output NO
.
5
4 2 -3 1 6
YES