#K72032. Morse Prime Checker
Morse Prime Checker
Morse Prime Checker
This challenge requires you to determine whether a given Morse code string corresponds to a prime number. The Morse code string represents a digit according to the following mapping:
.----
→ 1..---
→ 2...--
→ 3....-
→ 4.....
→ 5-....
→ 6--...
→ 7---..
→ 8----.
→ 9-----
→ 0
Your task is to convert the Morse code into its corresponding digit, check whether the resulting number is a prime number, and then output True
if it is prime and False
otherwise. If the Morse code is invalid, output an error message.
The formula for checking whether a number \(n\) is prime is to verify that no integer \(i\) in the range \(2 \leq i \leq \sqrt{n}\) divides \(n\) without remainder. That is, \(n\) is prime if and only if \[ n > 1 \quad \text{and} \quad \forall i \in \{2, 3, \dots, \lfloor \sqrt{n} \rfloor\},\; i \nmid n. \]
inputFormat
The input consists of a single line from stdin
containing a Morse code string representing a digit. The Morse code will be one of the valid codes listed, otherwise the program should handle it as an error.
outputFormat
Output to stdout
a single line: True
if the number corresponding to the Morse code is prime, False
if it is not prime. In case of an invalid Morse code input, output Error
.
.----
False