#K36042. Max Square Tiles

    ID: 25666 Type: Default 1000ms 256MiB

Max Square Tiles

Max Square Tiles

You are given a rectangle of height H and width W. The task is to find the maximum number of equal-sized square tiles that can completely cover the rectangle without overlapping. The side length of the square tile must be a factor of both dimensions of the rectangle.

Let \( g = \gcd(H, W) \). Then the side of the largest possible square tile is \( g \), and the number of square tiles required is given by: \[ \frac{H}{g} \times \frac{W}{g} \]

For example, if H=6 and W=9, then \( g=3 \) and the number of square tiles is \( (6/3) \times (9/3)=2\times3=6 \).

inputFormat

The input consists of two space-separated integers: H (the height of the rectangle) and W (the width of the rectangle). These numbers are provided via standard input (stdin).

outputFormat

Output a single integer representing the maximum number of equal-sized square tiles that can cover the rectangle completely. The result should be printed to standard output (stdout).

## sample
6 9
6