#D9815. Birthday

    ID: 8157 Type: Default 2000ms 256MiB

Birthday

Birthday

Ali is Hamed's little brother and tomorrow is his birthday. Hamed wants his brother to earn his gift so he gave him a hard programming problem and told him if he can successfully solve it, he'll get him a brand new laptop. Ali is not yet a very talented programmer like Hamed and although he usually doesn't cheat but this time is an exception. It's about a brand new laptop. So he decided to secretly seek help from you. Please solve this problem for Ali.

An n-vertex weighted rooted tree is given. Vertex number 1 is a root of the tree. We define d(u, v) as the sum of edges weights on the shortest path between vertices u and v. Specifically we define d(u, u) = 0. Also let's define S(v) for each vertex v as a set containing all vertices u such that d(1, u) = d(1, v) + d(v, u). Function f(u, v) is then defined using the following formula:

The goal is to calculate f(u, v) for each of the q given pair of vertices. As the answer can be rather large it's enough to print it modulo 109 + 7.

Input

In the first line of input an integer n (1 ≤ n ≤ 105), number of vertices of the tree is given.

In each of the next n - 1 lines three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, 1 ≤ ci ≤ 109) are given indicating an edge between ai and bi with weight equal to ci.

In the next line an integer q (1 ≤ q ≤ 105), number of vertex pairs, is given.

In each of the next q lines two space-separated integers ui, vi (1 ≤ ui, vi ≤ n) are given meaning that you must calculate f(ui, vi).

It is guaranteed that the given edges form a tree.

Output

Output q lines. In the i-th line print the value of f(ui, vi) modulo 109 + 7.

Examples

Input

5 1 2 1 4 3 1 3 5 1 1 3 1 5 1 1 1 5 2 4 2 1 3 5

Output

10 1000000005 1000000002 23 1000000002

Input

8 1 2 100 1 3 20 2 4 2 2 5 1 3 6 1 3 7 2 6 8 5 6 1 8 2 3 5 8 2 6 4 7 6 1

Output

999968753 49796 999961271 999991235 999958569 45130

inputFormat

Input

In the first line of input an integer n (1 ≤ n ≤ 105), number of vertices of the tree is given.

In each of the next n - 1 lines three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, 1 ≤ ci ≤ 109) are given indicating an edge between ai and bi with weight equal to ci.

In the next line an integer q (1 ≤ q ≤ 105), number of vertex pairs, is given.

In each of the next q lines two space-separated integers ui, vi (1 ≤ ui, vi ≤ n) are given meaning that you must calculate f(ui, vi).

It is guaranteed that the given edges form a tree.

outputFormat

Output

Output q lines. In the i-th line print the value of f(ui, vi) modulo 109 + 7.

Examples

Input

5 1 2 1 4 3 1 3 5 1 1 3 1 5 1 1 1 5 2 4 2 1 3 5

Output

10 1000000005 1000000002 23 1000000002

Input

8 1 2 100 1 3 20 2 4 2 2 5 1 3 6 1 3 7 2 6 8 5 6 1 8 2 3 5 8 2 6 4 7 6 1

Output

999968753 49796 999961271 999991235 999958569 45130

样例

8
1 2 100
1 3 20
2 4 2
2 5 1
3 6 1
3 7 2
6 8 5
6
1 8
2 3
5 8
2 6
4 7
6 1
999968753

49796 999961271 999991235 999958569 45130

</p>