#D9452. Priority Queue

    ID: 7854 Type: Default 3000ms 512MiB

Priority Queue

Priority Queue

You are given a sequence A, where its elements are either in the form + x or -, where x is an integer.

For such a sequence S where its elements are either in the form + x or -, define f(S) as follows:

  • iterate through S's elements from the first one to the last one, and maintain a multiset T as you iterate through it.
  • for each element, if it's in the form + x, add x to T; otherwise, erase the smallest element from T (if T is empty, do nothing).
  • after iterating through all S's elements, compute the sum of all elements in T. f(S) is defined as the sum.

The sequence b is a subsequence of the sequence a if b can be derived from a by removing zero or more elements without changing the order of the remaining elements. For all A's subsequences B, compute the sum of f(B), modulo 998 244 353.

Input

The first line contains an integer n (1≤ n≤ 500) — the length of A.

Each of the next n lines begins with an operator + or -. If the operator is +, then it's followed by an integer x (1≤ x<998 244 353). The i-th line of those n lines describes the i-th element in A.

Output

Print one integer, which is the answer to the problem, modulo 998 244 353.

Examples

Input

4

  • 1
  • 2

Output

16

Input

15

  • 2432543
  • 4567886
  • 65638788
  • 578943
  • 62356680
  • 711111
  • 998244352

Output

750759115

Note

In the first example, the following are all possible pairs of B and f(B):

  • B= {}, f(B)=0.
  • B= {-}, f(B)=0.
  • B= {+ 1, -}, f(B)=0.
  • B= {-, + 1, -}, f(B)=0.
  • B= {+ 2, -}, f(B)=0.
  • B= {-, + 2, -}, f(B)=0.
  • B= {-}, f(B)=0.
  • B= {-, -}, f(B)=0.
  • B= {+ 1, + 2}, f(B)=3.
  • B= {+ 1, + 2, -}, f(B)=2.
  • B= {-, + 1, + 2}, f(B)=3.
  • B= {-, + 1, + 2, -}, f(B)=2.
  • B= {-, + 1}, f(B)=1.
  • B= {+ 1}, f(B)=1.
  • B= {-, + 2}, f(B)=2.
  • B= {+ 2}, f(B)=2.

The sum of these values is 16.

inputFormat

Input

The first line contains an integer n (1≤ n≤ 500) — the length of A.

Each of the next n lines begins with an operator + or -. If the operator is +, then it's followed by an integer x (1≤ x<998 244 353). The i-th line of those n lines describes the i-th element in A.

outputFormat

Output

Print one integer, which is the answer to the problem, modulo 998 244 353.

Examples

Input

4

  • 1
  • 2

Output

16

Input

15

  • 2432543
  • 4567886
  • 65638788
  • 578943
  • 62356680
  • 711111
  • 998244352

Output

750759115

Note

In the first example, the following are all possible pairs of B and f(B):

  • B= {}, f(B)=0.
  • B= {-}, f(B)=0.
  • B= {+ 1, -}, f(B)=0.
  • B= {-, + 1, -}, f(B)=0.
  • B= {+ 2, -}, f(B)=0.
  • B= {-, + 2, -}, f(B)=0.
  • B= {-}, f(B)=0.
  • B= {-, -}, f(B)=0.
  • B= {+ 1, + 2}, f(B)=3.
  • B= {+ 1, + 2, -}, f(B)=2.
  • B= {-, + 1, + 2}, f(B)=3.
  • B= {-, + 1, + 2, -}, f(B)=2.
  • B= {-, + 1}, f(B)=1.
  • B= {+ 1}, f(B)=1.
  • B= {-, + 2}, f(B)=2.
  • B= {+ 2}, f(B)=2.

The sum of these values is 16.

样例

15
+ 2432543
-
+ 4567886
+ 65638788
-
+ 578943
-
-
+ 62356680
-
+ 711111
-
+ 998244352
-
-
750759115

</p>