#D9436. Stop. Otherwise...

    ID: 7848 Type: Default 2000ms 1073MiB

Stop. Otherwise...

Stop. Otherwise...

Takahashi throws N dice, each having K sides with all integers from 1 to K. The dice are NOT pairwise distinguishable. For each i=2,3,...,2K, find the following value modulo 998244353:

  • The number of combinations of N sides shown by the dice such that the sum of no two different sides is i.

Note that the dice are NOT distinguishable, that is, two combinations are considered different when there exists an integer k such that the number of dice showing k is different in those two.

Constraints

  • 1 \leq K \leq 2000
  • 2 \leq N \leq 2000
  • K and N are integers.

Input

Input is given from Standard Input in the following format:

K N

Output

Print 2K-1 integers. The t-th of them (1\leq t\leq 2K-1) should be the answer for i=t+1.

Examples

Input

3 3

Output

7 7 4 7 7

Input

4 5

Output

36 36 20 20 20 36 36

Input

6 1000

Output

149393349 149393349 668669001 668669001 4000002 4000002 4000002 668669001 668669001 149393349 149393349

inputFormat

Input

Input is given from Standard Input in the following format:

K N

outputFormat

Output

Print 2K-1 integers. The t-th of them (1\leq t\leq 2K-1) should be the answer for i=t+1.

Examples

Input

3 3

Output

7 7 4 7 7

Input

4 5

Output

36 36 20 20 20 36 36

Input

6 1000

Output

149393349 149393349 668669001 668669001 4000002 4000002 4000002 668669001 668669001 149393349 149393349

样例

6 1000
149393349

149393349 668669001 668669001 4000002 4000002 4000002 668669001 668669001 149393349 149393349

</p>