#D9186. GP 2
GP 2
GP 2
We have a sequence of N integers: x=(x_0,x_1,\cdots,x_{N-1}). Initially, x_i=0 for each i (0 \leq i \leq N-1).
Snuke will perform the following operation exactly M times:
- Choose two distinct indices i, j (0 \leq i,j \leq N-1,\ i \neq j). Then, replace x_i with x_i+2 and x_j with x_j+1.
Find the number of different sequences that can result after M operations. Since it can be enormous, compute the count modulo 998244353.
Constraints
- 2 \leq N \leq 10^6
- 1 \leq M \leq 5 \times 10^5
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N M
Output
Print the number of different sequences that can result after M operations, modulo 998244353.
Examples
Input
2 2
Output
3
Input
3 2
Output
19
Input
10 10
Output
211428932
Input
100000 50000
Output
3463133
inputFormat
input are integers.
Input
Input is given from Standard Input in the following format:
N M
outputFormat
Output
Print the number of different sequences that can result after M operations, modulo 998244353.
Examples
Input
2 2
Output
3
Input
3 2
Output
19
Input
10 10
Output
211428932
Input
100000 50000
Output
3463133
样例
3 2
19