#D913. Array Beauty
Array Beauty
Array Beauty
Let's call beauty of an array b_1, b_2, …, b_n (n > 1) — min_{1 ≤ i < j ≤ n} |b_i - b_j|.
You're given an array a_1, a_2, … a_n and a number k. Calculate the sum of beauty over all subsequences of the array of length exactly k. As this number can be very large, output it modulo 998244353.
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements.
Input
The first line contains integers n, k (2 ≤ k ≤ n ≤ 1000).
The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 10^5).
Output
Output one integer — the sum of beauty over all subsequences of the array of length exactly k. As this number can be very large, output it modulo 998244353.
Examples
Input
4 3 1 7 3 5
Output
8
Input
5 5 1 10 100 1000 10000
Output
9
Note
In the first example, there are 4 subsequences of length 3 — [1, 7, 3], [1, 3, 5], [7, 3, 5], [1, 7, 5], each of which has beauty 2, so answer is 8.
In the second example, there is only one subsequence of length 5 — the whole array, which has the beauty equal to |10-1| = 9.
inputFormat
outputFormat
output it modulo 998244353.
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements.
Input
The first line contains integers n, k (2 ≤ k ≤ n ≤ 1000).
The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 10^5).
Output
Output one integer — the sum of beauty over all subsequences of the array of length exactly k. As this number can be very large, output it modulo 998244353.
Examples
Input
4 3 1 7 3 5
Output
8
Input
5 5 1 10 100 1000 10000
Output
9
Note
In the first example, there are 4 subsequences of length 3 — [1, 7, 3], [1, 3, 5], [7, 3, 5], [1, 7, 5], each of which has beauty 2, so answer is 8.
In the second example, there is only one subsequence of length 5 — the whole array, which has the beauty equal to |10-1| = 9.
样例
5 5
1 10 100 1000 10000
9
</p>