#D9070. Long number
Long number
Long number
Consider the following grammar:
- ::= | '+'
- ::= | '-' | '(' ')'
- ::= <pos_digit> |
- ::= '0' | <pos_digit>
- <pos_digit> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
This grammar describes a number in decimal system using the following rules:
- describes itself,
- - (l-r, l ≤ r) describes integer which is concatenation of all integers from l to r, written without leading zeros. For example, 8-11 describes 891011,
- () describes integer which is concatenation of copies of integer described by ,
- + describes integer which is concatenation of integers described by and .
For example, 2(2-4+1)+2(2(17)) describes the integer 2341234117171717.
You are given an expression in the given grammar. Print the integer described by it modulo 109 + 7.
Input
The only line contains a non-empty string at most 105 characters long which is valid according to the given grammar. In particular, it means that in terms l-r l ≤ r holds.
Output
Print single integer — the number described by the expression modulo 109 + 7.
Examples
Input
8-11
Output
891011
Input
2(2-4+1)+2(2(17))
Output
100783079
Input
1234-5678
Output
745428774
Input
1+2+3+4-5+6+7-9
Output
123456789
inputFormat
Input
The only line contains a non-empty string at most 105 characters long which is valid according to the given grammar. In particular, it means that in terms l-r l ≤ r holds.
outputFormat
Output
Print single integer — the number described by the expression modulo 109 + 7.
Examples
Input
8-11
Output
891011
Input
2(2-4+1)+2(2(17))
Output
100783079
Input
1234-5678
Output
745428774
Input
1+2+3+4-5+6+7-9
Output
123456789
样例
8-11
891011
</p>