#D8980. ABland Yard

    ID: 7461 Type: Default 2000ms 1073MiB

ABland Yard

ABland Yard

You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, A or B. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i.

The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint.

For example, in a graph where Vertex 1 has the label A and Vertex 2 has the label B, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is ABABB.

Determine if Nusook can make all strings consisting of A and B.

Constraints

  • 2 \leq N \leq 2 \times 10^{5}
  • 1 \leq M \leq 2 \times 10^{5}
  • |s| = N
  • s_i is A or B.
  • 1 \leq a_i, b_i \leq N
  • The given graph may NOT be simple or connected.

Input

Input is given from Standard Input in the following format:

N M s a_1 b_1 : a_{M} b_{M}

Output

If Nusook can make all strings consisting of A and B, print Yes; otherwise, print No.

Examples

Input

2 3 AB 1 1 1 2 2 2

Output

Yes

Input

4 3 ABAB 1 2 2 3 3 1

Output

No

Input

13 23 ABAAAABBBBAAB 7 1 10 6 1 11 2 10 2 8 2 11 11 12 8 3 7 12 11 2 13 13 11 9 4 1 9 7 9 6 8 13 8 6 4 10 8 7 4 3 2 1 8 12 6 9

Output

Yes

Input

13 17 BBABBBAABABBA 7 1 7 9 11 12 3 9 11 9 2 1 11 5 12 11 10 8 1 11 1 8 7 7 9 10 8 8 8 12 6 2 13 11

Output

No

inputFormat

Input

Input is given from Standard Input in the following format:

N M s a_1 b_1 : a_{M} b_{M}

outputFormat

Output

If Nusook can make all strings consisting of A and B, print Yes; otherwise, print No.

Examples

Input

2 3 AB 1 1 1 2 2 2

Output

Yes

Input

4 3 ABAB 1 2 2 3 3 1

Output

No

Input

13 23 ABAAAABBBBAAB 7 1 10 6 1 11 2 10 2 8 2 11 11 12 8 3 7 12 11 2 13 13 11 9 4 1 9 7 9 6 8 13 8 6 4 10 8 7 4 3 2 1 8 12 6 9

Output

Yes

Input

13 17 BBABBBAABABBA 7 1 7 9 11 12 3 9 11 9 2 1 11 5 12 11 10 8 1 11 1 8 7 7 9 10 8 8 8 12 6 2 13 11

Output

No

样例

13 17
BBABBBAABABBA
7 1
7 9
11 12
3 9
11 9
2 1
11 5
12 11
10 8
1 11
1 8
7 7
9 10
8 8
8 12
6 2
13 11
No