#D8777. Yet Another LCP Problem

    ID: 7294 Type: Default 2000ms 256MiB

Yet Another LCP Problem

Yet Another LCP Problem

Let LCP(s, t) be the length of the longest common prefix of strings s and t. Also let s[x ... y] be the substring of s from index x to index y (inclusive). For example, if s = "abcde", then s[1 ... 3] = "abc", s[2 ... 5] = "bcde".

You are given a string s of length n and q queries. Each query is a pair of integer sets a_1, a_2, ..., a_k and b_1, b_2, ..., b_l. Calculate ∑{i = 1}^{i = k} ∑{j = 1}^{j = l}{LCP(s[a_i ... n], s[b_j ... n])} for each query.

Input

The first line contains two integers n and q (1 ≤ n, q ≤ 2 ⋅ 10^5) — the length of string s and the number of queries, respectively.

The second line contains a string s consisting of lowercase Latin letters (|s| = n).

Next 3q lines contains descriptions of queries — three lines per query. The first line of each query contains two integers k_i and l_i (1 ≤ k_i, l_i ≤ n) — sizes of sets a and b respectively.

The second line of each query contains k_i integers a_1, a_2, ... a_{k_i} (1 ≤ a_1 < a_2 < ... < a_{k_i} ≤ n) — set a.

The third line of each query contains l_i integers b_1, b_2, ... b_{l_i} (1 ≤ b_1 < b_2 < ... < b_{l_i} ≤ n) — set b.

It is guaranteed that ∑{i = 1}^{i = q}{k_i} ≤ 2 ⋅ 10^5 and ∑{i = 1}^{i = q}{l_i} ≤ 2 ⋅ 10^5.

Output

Print q integers — answers for the queries in the same order queries are given in the input.

Example

Input

7 4 abacaba 2 2 1 2 1 2 3 1 1 2 3 7 1 7 1 1 2 3 4 5 6 7 2 2 1 5 1 5

Output

13 2 12 16

Note

Description of queries:

  1. In the first query s[1 ... 7] = abacaba and s[2 ... 7] = bacaba are considered. The answer for the query is LCP(abacaba, abacaba) + LCP(abacaba, bacaba) + LCP(bacaba, abacaba) + LCP(bacaba, bacaba) = 7 + 0 + 0 + 6 = 13.
  2. In the second query s[1 ... 7] = abacaba, s[2 ... 7] = bacaba, s[3 ... 7] = acaba and s[7 ... 7] = a are considered. The answer for the query is LCP(abacaba, a) + LCP(bacaba, a) + LCP(acaba, a) = 1 + 0 + 1 = 2.
  3. In the third query s[1 ... 7] = abacaba are compared with all suffixes. The answer is the sum of non-zero values: LCP(abacaba, abacaba) + LCP(abacaba, acaba) + LCP(abacaba, aba) + LCP(abacaba, a) = 7 + 1 + 3 + 1 = 12.
  4. In the fourth query s[1 ... 7] = abacaba and s[5 ... 7] = aba are considered. The answer for the query is LCP(abacaba, abacaba) + LCP(abacaba, aba) + LCP(aba, abacaba) + LCP(aba, aba) = 7 + 3 + 3 + 3 = 16.

inputFormat

Input

The first line contains two integers n and q (1 ≤ n, q ≤ 2 ⋅ 10^5) — the length of string s and the number of queries, respectively.

The second line contains a string s consisting of lowercase Latin letters (|s| = n).

Next 3q lines contains descriptions of queries — three lines per query. The first line of each query contains two integers k_i and l_i (1 ≤ k_i, l_i ≤ n) — sizes of sets a and b respectively.

The second line of each query contains k_i integers a_1, a_2, ... a_{k_i} (1 ≤ a_1 < a_2 < ... < a_{k_i} ≤ n) — set a.

The third line of each query contains l_i integers b_1, b_2, ... b_{l_i} (1 ≤ b_1 < b_2 < ... < b_{l_i} ≤ n) — set b.

It is guaranteed that ∑{i = 1}^{i = q}{k_i} ≤ 2 ⋅ 10^5 and ∑{i = 1}^{i = q}{l_i} ≤ 2 ⋅ 10^5.

outputFormat

Output

Print q integers — answers for the queries in the same order queries are given in the input.

Example

Input

7 4 abacaba 2 2 1 2 1 2 3 1 1 2 3 7 1 7 1 1 2 3 4 5 6 7 2 2 1 5 1 5

Output

13 2 12 16

Note

Description of queries:

  1. In the first query s[1 ... 7] = abacaba and s[2 ... 7] = bacaba are considered. The answer for the query is LCP(abacaba, abacaba) + LCP(abacaba, bacaba) + LCP(bacaba, abacaba) + LCP(bacaba, bacaba) = 7 + 0 + 0 + 6 = 13.
  2. In the second query s[1 ... 7] = abacaba, s[2 ... 7] = bacaba, s[3 ... 7] = acaba and s[7 ... 7] = a are considered. The answer for the query is LCP(abacaba, a) + LCP(bacaba, a) + LCP(acaba, a) = 1 + 0 + 1 = 2.
  3. In the third query s[1 ... 7] = abacaba are compared with all suffixes. The answer is the sum of non-zero values: LCP(abacaba, abacaba) + LCP(abacaba, acaba) + LCP(abacaba, aba) + LCP(abacaba, a) = 7 + 1 + 3 + 1 = 12.
  4. In the fourth query s[1 ... 7] = abacaba and s[5 ... 7] = aba are considered. The answer for the query is LCP(abacaba, abacaba) + LCP(abacaba, aba) + LCP(aba, abacaba) + LCP(aba, aba) = 7 + 3 + 3 + 3 = 16.

样例

7 4
abacaba
2 2
1 2
1 2
3 1
1 2 3
7
1 7
1
1 2 3 4 5 6 7
2 2
1 5
1 5
13

2 12 16

</p>