#D8758. Camel Train
Camel Train
Camel Train
We have N camels numbered 1,2,\ldots,N. Snuke has decided to make them line up in a row.
The happiness of Camel i will be L_i if it is among the K_i frontmost camels, and R_i otherwise.
Snuke wants to maximize the total happiness of the camels. Find the maximum possible total happiness of the camel.
Solve this problem for each of the T test cases given.
Constraints
- All values in input are integers.
- 1 \leq T \leq 10^5
- 1 \leq N \leq 2 \times 10^{5}
- 1 \leq K_i \leq N
- 1 \leq L_i, R_i \leq 10^9
- The sum of values of N in each input file is at most 2 \times 10^5.
Input
Input is given from Standard Input in the following format:
T \mathrm{case}_1 \vdots \mathrm{case}_T
Each case is given in the following format:
N K_1 L_1 R_1 \vdots K_N L_N R_N
Output
Print T lines. The i-th line should contain the answer to the i-th test case.
Example
Input
3 2 1 5 10 2 15 5 3 2 93 78 1 71 59 3 57 96 19 19 23 16 5 90 13 12 85 70 19 67 78 12 16 60 18 48 28 5 4 24 12 97 97 4 57 87 19 91 74 18 100 76 7 86 46 9 100 57 3 76 73 6 84 93 1 6 84 11 75 94 19 15 3 12 11 34
Output
25 221 1354
inputFormat
input are integers.
- 1 \leq T \leq 10^5
- 1 \leq N \leq 2 \times 10^{5}
- 1 \leq K_i \leq N
- 1 \leq L_i, R_i \leq 10^9
- The sum of values of N in each input file is at most 2 \times 10^5.
Input
Input is given from Standard Input in the following format:
T \mathrm{case}_1 \vdots \mathrm{case}_T
Each case is given in the following format:
N K_1 L_1 R_1 \vdots K_N L_N R_N
outputFormat
Output
Print T lines. The i-th line should contain the answer to the i-th test case.
Example
Input
3 2 1 5 10 2 15 5 3 2 93 78 1 71 59 3 57 96 19 19 23 16 5 90 13 12 85 70 19 67 78 12 16 60 18 48 28 5 4 24 12 97 97 4 57 87 19 91 74 18 100 76 7 86 46 9 100 57 3 76 73 6 84 93 1 6 84 11 75 94 19 15 3 12 11 34
Output
25 221 1354
样例
3
2
1 5 10
2 15 5
3
2 93 78
1 71 59
3 57 96
19
19 23 16
5 90 13
12 85 70
19 67 78
12 16 60
18 48 28
5 4 24
12 97 97
4 57 87
19 91 74
18 100 76
7 86 46
9 100 57
3 76 73
6 84 93
1 6 84
11 75 94
19 15 3
12 11 34
25
221
1354
</p>