#D8582. Black or White
Black or White
Black or White
Today, Snuke will eat B pieces of black chocolate and W pieces of white chocolate for an afternoon snack.
He will repeat the following procedure until there is no piece left:
- Choose black or white with equal probability, and eat a piece of that color if it exists.
For each integer i from 1 to B+W (inclusive), find the probability that the color of the i-th piece to be eaten is black. It can be shown that these probabilities are rational, and we ask you to print them modulo 10^9 + 7, as described in Notes.
Constraints
- All values in input are integers.
- 1 \leq B,W \leq 10^{5}
Input
Input is given from Standard Input in the following format:
B W
Output
Print the answers in B+W lines. In the i-th line, print the probability that the color of the i-th piece to be eaten is black, modulo 10^{9}+7.
Examples
Input
2 1
Output
500000004 750000006 750000006
Input
3 2
Output
500000004 500000004 625000005 187500002 187500002
Input
6 9
Output
500000004 500000004 500000004 500000004 500000004 500000004 929687507 218750002 224609377 303710940 633300786 694091802 172485353 411682132 411682132
inputFormat
input are integers.
- 1 \leq B,W \leq 10^{5}
Input
Input is given from Standard Input in the following format:
B W
outputFormat
Output
Print the answers in B+W lines. In the i-th line, print the probability that the color of the i-th piece to be eaten is black, modulo 10^{9}+7.
Examples
Input
2 1
Output
500000004 750000006 750000006
Input
3 2
Output
500000004 500000004 625000005 187500002 187500002
Input
6 9
Output
500000004 500000004 500000004 500000004 500000004 500000004 929687507 218750002 224609377 303710940 633300786 694091802 172485353 411682132 411682132
样例
2 1
500000004
750000006
750000006
</p>