#D8371. Walk on Graph
Walk on Graph
Walk on Graph
You are given a connected graph with N vertices and M edges. The vertices are numbered 1 to N. The i-th edge is an undirected edge of length C_i connecting Vertex A_i and Vertex B_i.
Additionally, an odd number MOD is given.
You will be given Q queries, which should be processed. The queries take the following form:
- Given in the i-th query are S_i, T_i and R_i. Print
YES
if there exists a path from Vertex S_i to Vertex T_i whose length is R_i modulo MOD, and printNO
otherwise. A path may traverse the same edge multiple times, or go back using the edge it just used.
Here, in this problem, the length of a path is NOT the sum of the lengths of its edges themselves, but the length of the first edge used in the path gets multiplied by 1, the second edge gets multiplied by 2, the third edge gets multiplied by 4, and so on. (More formally, let L_1,...,L_k be the lengths of the edges used, in this order. The length of that path is the sum of L_i \times 2^{i-1}.)
Constraints
- 1 \leq N,M,Q \leq 50000
- 3 \leq MOD \leq 10^{6}
- MOD is odd.
- 1 \leq A_i,B_i\leq N
- 0 \leq C_i \leq MOD-1
- 1 \leq S_i,T_i \leq N
- 0 \leq R_i \leq MOD-1
- The given graph is connected. (It may contain self-loops or multiple edges.)
Input
Input is given from Standard Input in the following format:
N M Q MOD A_1 B_1 C_1 \vdots A_M B_M C_M S_1 T_1 R_1 \vdots S_Q T_Q R_Q
Output
Print the answers to the i-th query in the i-th line.
Examples
Input
3 2 2 2019 1 2 1 2 3 2 1 3 5 1 3 4
Output
YES NO
Input
6 6 3 2019 1 2 4 2 3 4 3 4 4 4 5 4 5 6 4 6 1 4 2 6 1110 3 1 1111 4 5 1112
Output
YES NO NO
Input
1 2 3 25 1 1 1 1 1 2 1 1 13 1 1 6 1 1 14
Output
YES YES YES
Input
10 15 10 15 1 2 1 2 3 6 3 4 6 2 5 1 5 6 1 4 7 6 1 8 11 2 9 6 5 10 11 9 10 11 3 6 1 2 5 1 2 7 11 9 10 11 5 6 11 1 3 5 9 8 3 7 7 7 7 10 13 4 1 10 9 3 12 10 10 14 9 2 1 6 6 5 8 8 4
Output
YES NO NO NO NO NO NO YES YES NO
inputFormat
Input
Input is given from Standard Input in the following format:
N M Q MOD A_1 B_1 C_1 \vdots A_M B_M C_M S_1 T_1 R_1 \vdots S_Q T_Q R_Q
outputFormat
Output
Print the answers to the i-th query in the i-th line.
Examples
Input
3 2 2 2019 1 2 1 2 3 2 1 3 5 1 3 4
Output
YES NO
Input
6 6 3 2019 1 2 4 2 3 4 3 4 4 4 5 4 5 6 4 6 1 4 2 6 1110 3 1 1111 4 5 1112
Output
YES NO NO
Input
1 2 3 25 1 1 1 1 1 2 1 1 13 1 1 6 1 1 14
Output
YES YES YES
Input
10 15 10 15 1 2 1 2 3 6 3 4 6 2 5 1 5 6 1 4 7 6 1 8 11 2 9 6 5 10 11 9 10 11 3 6 1 2 5 1 2 7 11 9 10 11 5 6 11 1 3 5 9 8 3 7 7 7 7 10 13 4 1 10 9 3 12 10 10 14 9 2 1 6 6 5 8 8 4
Output
YES NO NO NO NO NO NO YES YES NO
样例
3 2 2 2019
1 2 1
2 3 2
1 3 5
1 3 4
YES
NO
</p>