#D8111. Permutation Forgery

    ID: 6741 Type: Default 1000ms 256MiB

Permutation Forgery

Permutation Forgery

A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).

Let p be any permutation of length n. We define the fingerprint F(p) of p as the sorted array of sums of adjacent elements in p. More formally,

$F(p)=sort([p_1+p_2,p_2+p_3,…,p_{n-1}+p_n]).$

For example, if n=4 and p=[1,4,2,3], then the fingerprint is given by F(p)=sort([1+4,4+2,2+3])=sort([5,6,5])=[5,5,6].

You are given a permutation p of length n. Your task is to find a different permutation p' with the same fingerprint. Two permutations p and p' are considered different if there is some index i such that p_i ≠ p'_i.

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 668). Description of the test cases follows.

The first line of each test case contains a single integer n (2≤ n≤ 100) — the length of the permutation.

The second line of each test case contains n integers p_1,…,p_n (1≤ p_i≤ n). It is guaranteed that p is a permutation.

Output

For each test case, output n integers p'_1,…, p'_n — a permutation such that p'≠ p and F(p')=F(p).

We can prove that for every permutation satisfying the input constraints, a solution exists.

If there are multiple solutions, you may output any.

Example

Input

3 2 1 2 6 2 1 6 5 4 3 5 2 4 3 1 5

Output

2 1 1 2 5 6 3 4 3 1 5 2 4

Note

In the first test case, F(p)=sort([1+2])=[3].

And F(p')=sort([2+1])=[3].

In the second test case, F(p)=sort([2+1,1+6,6+5,5+4,4+3])=sort([3,7,11,9,7])=[3,7,7,9,11].

And F(p')=sort([1+2,2+5,5+6,6+3,3+4])=sort([3,7,11,9,7])=[3,7,7,9,11].

In the third test case, F(p)=sort([2+4,4+3,3+1,1+5])=sort([6,7,4,6])=[4,6,6,7].

And F(p')=sort([3+1,1+5,5+2,2+4])=sort([4,6,7,6])=[4,6,6,7].

inputFormat

Input

Each test contains multiple test cases. The first line contains the number of test cases t (1 ≤ t ≤ 668). Description of the test cases follows.

The first line of each test case contains a single integer n (2≤ n≤ 100) — the length of the permutation.

The second line of each test case contains n integers p_1,…,p_n (1≤ p_i≤ n). It is guaranteed that p is a permutation.

outputFormat

Output

For each test case, output n integers p'_1,…, p'_n — a permutation such that p'≠ p and F(p')=F(p).

We can prove that for every permutation satisfying the input constraints, a solution exists.

If there are multiple solutions, you may output any.

Example

Input

3 2 1 2 6 2 1 6 5 4 3 5 2 4 3 1 5

Output

2 1 1 2 5 6 3 4 3 1 5 2 4

Note

In the first test case, F(p)=sort([1+2])=[3].

And F(p')=sort([2+1])=[3].

In the second test case, F(p)=sort([2+1,1+6,6+5,5+4,4+3])=sort([3,7,11,9,7])=[3,7,7,9,11].

And F(p')=sort([1+2,2+5,5+6,6+3,3+4])=sort([3,7,11,9,7])=[3,7,7,9,11].

In the third test case, F(p)=sort([2+4,4+3,3+1,1+5])=sort([6,7,4,6])=[4,6,6,7].

And F(p')=sort([3+1,1+5,5+2,2+4])=sort([4,6,7,6])=[4,6,6,7].

样例

3
2
1 2
6
2 1 6 5 4 3
5
2 4 3 1 5
2 1

3 4 5 6 1 2 5 1 3 4 2

</p>