#D8107. NRE
NRE
NRE
You are given a sequence a = \{a_1, ..., a_N\} with all zeros, and a sequence b = \{b_1, ..., b_N\} consisting of 0 and 1. The length of both is N.
You can perform Q kinds of operations. The i-th operation is as follows:
- Replace each of a_{l_i}, a_{l_i + 1}, ..., a_{r_i} with 1.
Minimize the hamming distance between a and b, that is, the number of i such that a_i \neq b_i, by performing some of the Q operations.
Constraints
- 1 \leq N \leq 200,000
- b consists of 0 and 1.
- 1 \leq Q \leq 200,000
- 1 \leq l_i \leq r_i \leq N
- If i \neq j, either l_i \neq l_j or r_i \neq r_j.
Input
Input is given from Standard Input in the following format:
N b_1 b_2 ... b_N Q l_1 r_1 l_2 r_2 : l_Q r_Q
Output
Print the minimum possible hamming distance.
Examples
Input
3 1 0 1 1 1 3
Output
1
Input
3 1 0 1 2 1 1 3 3
Output
0
Input
3 1 0 1 2 1 1 2 3
Output
1
Input
5 0 1 0 1 0 1 1 5
Output
2
Input
9 0 1 0 1 1 1 0 1 0 3 1 4 5 8 6 7
Output
3
Input
15 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 9 4 10 13 14 1 7 4 14 9 11 2 6 7 8 3 12 7 13
Output
5
Input
10 0 0 0 1 0 0 1 1 1 0 7 1 4 2 5 1 3 6 7 9 9 1 5 7 9
Output
1
inputFormat
Input
Input is given from Standard Input in the following format:
N b_1 b_2 ... b_N Q l_1 r_1 l_2 r_2 : l_Q r_Q
outputFormat
Output
Print the minimum possible hamming distance.
Examples
Input
3 1 0 1 1 1 3
Output
1
Input
3 1 0 1 2 1 1 3 3
Output
0
Input
3 1 0 1 2 1 1 2 3
Output
1
Input
5 0 1 0 1 0 1 1 5
Output
2
Input
9 0 1 0 1 1 1 0 1 0 3 1 4 5 8 6 7
Output
3
Input
15 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 9 4 10 13 14 1 7 4 14 9 11 2 6 7 8 3 12 7 13
Output
5
Input
10 0 0 0 1 0 0 1 1 1 0 7 1 4 2 5 1 3 6 7 9 9 1 5 7 9
Output
1
样例
5
0 1 0 1 0
1
1 5
2