#D7980. Crossword Expert
Crossword Expert
Crossword Expert
Today Adilbek is taking his probability theory test. Unfortunately, when Adilbek arrived at the university, there had already been a long queue of students wanting to take the same test. Adilbek has estimated that he will be able to start the test only T seconds after coming.
Fortunately, Adilbek can spend time without revising any boring theorems or formulas. He has an app on this smartphone which contains n Japanese crosswords to solve. Adilbek has decided to solve them all one by one in the order they are listed in the app, without skipping any crossword. For each crossword, a number t_i is given that represents the time it takes an average crossword expert to solve this crossword (the time is given in seconds).
Adilbek is a true crossword expert, but, unfortunately, he is sometimes unlucky in choosing the way to solve the crossword. So, it takes him either t_i seconds or t_i + 1 seconds to solve the i-th crossword, equiprobably (with probability 1/2 he solves the crossword in exactly t_i seconds, and with probability 1/2 he has to spend an additional second to finish the crossword). All these events are independent.
After T seconds pass (or after solving the last crossword, if he manages to do it in less than T seconds), Adilbek closes the app (if he finishes some crossword at the same moment, that crossword is considered solved; otherwise Adilbek does not finish solving the current crossword at all). He thinks it would be an interesting probability theory problem to calculate E — the expected number of crosswords he will be able to solve completely. Can you calculate it?
Recall that the expected value of a discrete random variable is the probability-weighted average of all possible values — in this problem it means that the expected value of the number of solved crosswords can be calculated as E = ∑ _{i = 0}^{n} i p_i, where p_i is the probability that Adilbek will solve exactly i crosswords.
We can represent E as rational fraction P/Q with Q > 0. To give the answer, you should print P ⋅ Q^{-1} mod (10^9 + 7).
Input
The first line contains two integers n and T (1 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ T ≤ 2 ⋅ 10^{14}) — the number of crosswords and the time Adilbek has to spend, respectively.
The second line contains n integers t_1, t_2, ..., t_n (1 ≤ t_i ≤ 10^9), where t_i is the time it takes a crossword expert to solve the i-th crossword.
Note that Adilbek solves the crosswords in the order they are given in the input without skipping any of them.
Output
Print one integer — the expected value of the number of crosswords Adilbek solves in T seconds, expressed in the form of P ⋅ Q^{-1} mod (10^9 + 7).
Examples
Input
3 5 2 2 2
Output
750000007
Input
3 5 2 1 2
Output
125000003
Note
The answer for the first sample is equal to 14/8.
The answer for the second sample is equal to 17/8.
inputFormat
Input
The first line contains two integers n and T (1 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ T ≤ 2 ⋅ 10^{14}) — the number of crosswords and the time Adilbek has to spend, respectively.
The second line contains n integers t_1, t_2, ..., t_n (1 ≤ t_i ≤ 10^9), where t_i is the time it takes a crossword expert to solve the i-th crossword.
Note that Adilbek solves the crosswords in the order they are given in the input without skipping any of them.
outputFormat
Output
Print one integer — the expected value of the number of crosswords Adilbek solves in T seconds, expressed in the form of P ⋅ Q^{-1} mod (10^9 + 7).
Examples
Input
3 5 2 2 2
Output
750000007
Input
3 5 2 1 2
Output
125000003
Note
The answer for the first sample is equal to 14/8.
The answer for the second sample is equal to 17/8.
样例
3 5
2 2 2
750000007
</p>