#D7952. Alesya and Discrete Math
Alesya and Discrete Math
Alesya and Discrete Math
We call a function good if its domain of definition is some set of integers and if in case it's defined in x and x-1, f(x) = f(x-1) + 1 or f(x) = f(x-1).
Tanya has found n good functions f_{1}, …, f_{n}, which are defined on all integers from 0 to 10^{18} and f_i(0) = 0 and f_i(10^{18}) = L for all i from 1 to n. It's an notorious coincidence that n is a divisor of L.
She suggests Alesya a game. Using one question Alesya can ask Tanya a value of any single function in any single point. To win Alesya must choose integers l_{i} and r_{i} (0 ≤ l_{i} ≤ r_{i} ≤ 10^{18}), such that f_{i}(r_{i}) - f_{i}(l_{i}) ≥ L/n (here f_i(x) means the value of i-th function at point x) for all i such that 1 ≤ i ≤ n so that for any pair of two functions their segments [l_i, r_i] don't intersect (but may have one common point).
Unfortunately, Tanya doesn't allow to make more than 2 ⋅ 10^{5} questions. Help Alesya to win!
It can be proved that it's always possible to choose [l_i, r_i] which satisfy the conditions described above.
It's guaranteed, that Tanya doesn't change functions during the game, i.e. interactor is not adaptive
Input
The first line contains two integers n and L (1 ≤ n ≤ 1000, 1 ≤ L ≤ 10^{18}, n is a divisor of L) — number of functions and their value in 10^{18}.
Output
When you've found needed l_i, r_i, print "!" without quotes on a separate line and then n lines, i-th from them should contain two integers l_i, r_i divided by space.
Interaction
To ask f_i(x), print symbol "?" without quotes and then two integers i and x (1 ≤ i ≤ n, 0 ≤ x ≤ 10^{18}). Note, you must flush your output to get a response.
After that, you should read an integer which is a value of i-th function in point x.
You're allowed not more than 2 ⋅ 10^5 questions.
To flush you can use (just after printing an integer and end-of-line):
- fflush(stdout) in C++;
- System.out.flush() in Java;
- stdout.flush() in Python;
- flush(output) in Pascal;
- See the documentation for other languages.
Hacks:
Only tests where 1 ≤ L ≤ 2000 are allowed for hacks, for a hack set a test using following format:
The first line should contain two integers n and L (1 ≤ n ≤ 1000, 1 ≤ L ≤ 2000, n is a divisor of L) — number of functions and their value in 10^{18}.
Each of n following lines should contain L numbers l_1, l_2, ... , l_L (0 ≤ l_j < 10^{18} for all 1 ≤ j ≤ L and l_j < l_{j+1} for all 1 < j ≤ L), in i-th of them l_j means that f_i(l_j) < f_i(l_j + 1).
Example
Input
5 5 ? 1 0 ? 1 1 ? 2 1 ? 2 2 ? 3 2 ? 3 3 ? 4 3 ? 4 4 ? 5 4 ? 5 5 ! 0 1 1 2 2 3 3 4 4 5
Output
0 1 1 2 2 3 3 4 4 4 5
Note
In the example Tanya has 5 same functions where f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4 and all remaining points have value 5.
Alesya must choose two integers for all functions so that difference of values of a function in its points is not less than L/n (what is 1 here) and length of intersection of segments is zero.
One possible way is to choose pairs [0, 1], [1, 2], [2, 3], [3, 4] and [4, 5] for functions 1, 2, 3, 4 and 5 respectively.
inputFormat
Input
The first line contains two integers n and L (1 ≤ n ≤ 1000, 1 ≤ L ≤ 10^{18}, n is a divisor of L) — number of functions and their value in 10^{18}.
outputFormat
Output
When you've found needed l_i, r_i, print "!" without quotes on a separate line and then n lines, i-th from them should contain two integers l_i, r_i divided by space.
Interaction
To ask f_i(x), print symbol "?" without quotes and then two integers i and x (1 ≤ i ≤ n, 0 ≤ x ≤ 10^{18}). Note, you must flush your output to get a response.
After that, you should read an integer which is a value of i-th function in point x.
You're allowed not more than 2 ⋅ 10^5 questions.
To flush you can use (just after printing an integer and end-of-line):
- fflush(stdout) in C++;
- System.out.flush() in Java;
- stdout.flush() in Python;
- flush(output) in Pascal;
- See the documentation for other languages.
Hacks:
Only tests where 1 ≤ L ≤ 2000 are allowed for hacks, for a hack set a test using following format:
The first line should contain two integers n and L (1 ≤ n ≤ 1000, 1 ≤ L ≤ 2000, n is a divisor of L) — number of functions and their value in 10^{18}.
Each of n following lines should contain L numbers l_1, l_2, ... , l_L (0 ≤ l_j < 10^{18} for all 1 ≤ j ≤ L and l_j < l_{j+1} for all 1 < j ≤ L), in i-th of them l_j means that f_i(l_j) < f_i(l_j + 1).
Example
Input
5 5 ? 1 0 ? 1 1 ? 2 1 ? 2 2 ? 3 2 ? 3 3 ? 4 3 ? 4 4 ? 5 4 ? 5 5 ! 0 1 1 2 2 3 3 4 4 5
Output
0 1 1 2 2 3 3 4 4 4 5
Note
In the example Tanya has 5 same functions where f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4 and all remaining points have value 5.
Alesya must choose two integers for all functions so that difference of values of a function in its points is not less than L/n (what is 1 here) and length of intersection of segments is zero.
One possible way is to choose pairs [0, 1], [1, 2], [2, 3], [3, 4] and [4, 5] for functions 1, 2, 3, 4 and 5 respectively.
样例
5 5
? 1 0
? 1 1
? 2 1
? 2 2
? 3 2
? 3 3
? 4 3
? 4 4
? 5 4
? 5 5
!
0 1
1 2
2 3
3 4
4 5
0
1
1
2
2
3
3
4
4
4
5
</p>