#D7690. Black Cats Deployment

    ID: 6389 Type: Default 2000ms 268MiB

Black Cats Deployment

Black Cats Deployment

Snuke Festival 2017 will be held in a tree with N vertices numbered 1,2, ...,N. The i-th edge connects Vertex a_i and b_i, and has joyfulness c_i.

The staff is Snuke and N-1 black cats. Snuke will set up the headquarters in some vertex, and from there he will deploy a cat to each of the other N-1 vertices.

For each vertex, calculate the niceness when the headquarters are set up in that vertex. The niceness when the headquarters are set up in Vertex i is calculated as follows:

  • Let X=0.
  • For each integer j between 1 and N (inclusive) except i, do the following:
  • Add c to X, where c is the smallest joyfulness of an edge on the path from Vertex i to Vertex j.
  • The niceness is the final value of X.

Constraints

  • 1 \leq N \leq 10^{5}
  • 1 \leq a_i,b_i \leq N
  • 1 \leq c_i \leq 10^{9}
  • The given graph is a tree.
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N a_1 b_1 c_1 : a_{N-1} b_{N-1} c_{N-1}

Output

Print N lines. The i-th line must contain the niceness when the headquarters are set up in Vertex i.

Examples

Input

3 1 2 10 2 3 20

Output

20 30 30

Input

15 6 3 2 13 3 1 1 13 2 7 1 2 8 1 1 2 8 2 2 12 2 5 2 2 2 11 2 10 2 2 10 9 1 9 14 2 4 14 1 11 15 2

Output

16 20 15 14 20 15 16 20 15 20 20 20 16 15 20

Input

19 19 14 48 11 19 23 17 14 30 7 11 15 2 19 15 2 18 21 19 10 43 12 11 25 3 11 4 5 19 50 4 11 19 9 12 29 14 13 3 14 6 12 14 15 14 5 1 6 8 18 13 7 16 14

Output

103 237 71 263 370 193 231 207 299 358 295 299 54 368 220 220 319 237 370

inputFormat

input values are integers.

Input

Input is given from Standard Input in the following format:

N a_1 b_1 c_1 : a_{N-1} b_{N-1} c_{N-1}

outputFormat

Output

Print N lines. The i-th line must contain the niceness when the headquarters are set up in Vertex i.

Examples

Input

3 1 2 10 2 3 20

Output

20 30 30

Input

15 6 3 2 13 3 1 1 13 2 7 1 2 8 1 1 2 8 2 2 12 2 5 2 2 2 11 2 10 2 2 10 9 1 9 14 2 4 14 1 11 15 2

Output

16 20 15 14 20 15 16 20 15 20 20 20 16 15 20

Input

19 19 14 48 11 19 23 17 14 30 7 11 15 2 19 15 2 18 21 19 10 43 12 11 25 3 11 4 5 19 50 4 11 19 9 12 29 14 13 3 14 6 12 14 15 14 5 1 6 8 18 13 7 16 14

Output

103 237 71 263 370 193 231 207 299 358 295 299 54 368 220 220 319 237 370

样例

15
6 3 2
13 3 1
1 13 2
7 1 2
8 1 1
2 8 2
2 12 2
5 2 2
2 11 2
10 2 2
10 9 1
9 14 2
4 14 1
11 15 2
16

20 15 14 20 15 16 20 15 20 20 20 16 15 20

</p>