#D744. Minimax Problem
Minimax Problem
Minimax Problem
You are given n arrays a_1, a_2, ..., a_n; each array consists of exactly m integers. We denote the y-th element of the x-th array as a_{x, y}.
You have to choose two arrays a_i and a_j (1 ≤ i, j ≤ n, it is possible that i = j). After that, you will obtain a new array b consisting of m integers, such that for every k ∈ [1, m] b_k = max(a_{i, k}, a_{j, k}).
Your goal is to choose i and j so that the value of min _{k = 1}^{m} b_k is maximum possible.
Input
The first line contains two integers n and m (1 ≤ n ≤ 3 ⋅ 10^5, 1 ≤ m ≤ 8) — the number of arrays and the number of elements in each array, respectively.
Then n lines follow, the x-th line contains the array a_x represented by m integers a_{x, 1}, a_{x, 2}, ..., a_{x, m} (0 ≤ a_{x, y} ≤ 10^9).
Output
Print two integers i and j (1 ≤ i, j ≤ n, it is possible that i = j) — the indices of the two arrays you have to choose so that the value of min _{k = 1}^{m} b_k is maximum possible. If there are multiple answers, print any of them.
Example
Input
6 5 5 0 3 1 2 1 8 9 1 3 1 2 3 4 5 9 1 0 3 7 2 3 0 6 3 6 4 1 7 0
Output
1 5
inputFormat
Input
The first line contains two integers n and m (1 ≤ n ≤ 3 ⋅ 10^5, 1 ≤ m ≤ 8) — the number of arrays and the number of elements in each array, respectively.
Then n lines follow, the x-th line contains the array a_x represented by m integers a_{x, 1}, a_{x, 2}, ..., a_{x, m} (0 ≤ a_{x, y} ≤ 10^9).
outputFormat
Output
Print two integers i and j (1 ≤ i, j ≤ n, it is possible that i = j) — the indices of the two arrays you have to choose so that the value of min _{k = 1}^{m} b_k is maximum possible. If there are multiple answers, print any of them.
Example
Input
6 5 5 0 3 1 2 1 8 9 1 3 1 2 3 4 5 9 1 0 3 7 2 3 0 6 3 6 4 1 7 0
Output
1 5
样例
6 5
5 0 3 1 2
1 8 9 1 3
1 2 3 4 5
9 1 0 3 7
2 3 0 6 3
6 4 1 7 0
1 5
</p>