#D7336. Divisor Set
Divisor Set
Divisor Set
You are given an integer x represented as a product of n its prime divisors p_1 ⋅ p_2, ⋅ … ⋅ p_n. Let S be the set of all positive integer divisors of x (including 1 and x itself).
We call a set of integers D good if (and only if) there is no pair a ∈ D, b ∈ D such that a ≠ b and a divides b.
Find a good subset of S with maximum possible size. Since the answer can be large, print the size of the subset modulo 998244353.
Input
The first line contains the single integer n (1 ≤ n ≤ 2 ⋅ 10^5) — the number of prime divisors in representation of x.
The second line contains n integers p_1, p_2, ..., p_n (2 ≤ p_i ≤ 3 ⋅ 10^6) — the prime factorization of x.
Output
Print the maximum possible size of a good subset modulo 998244353.
Examples
Input
3 2999999 43 2999957
Output
3
Input
6 2 3 2 3 2 2
Output
3
Note
In the first sample, x = 2999999 ⋅ 43 ⋅ 2999957 and one of the maximum good subsets is { 43, 2999957, 2999999 }.
In the second sample, x = 2 ⋅ 3 ⋅ 2 ⋅ 3 ⋅ 2 ⋅ 2 = 144 and one of the maximum good subsets is { 9, 12, 16 }.
inputFormat
Input
The first line contains the single integer n (1 ≤ n ≤ 2 ⋅ 10^5) — the number of prime divisors in representation of x.
The second line contains n integers p_1, p_2, ..., p_n (2 ≤ p_i ≤ 3 ⋅ 10^6) — the prime factorization of x.
outputFormat
Output
Print the maximum possible size of a good subset modulo 998244353.
Examples
Input
3 2999999 43 2999957
Output
3
Input
6 2 3 2 3 2 2
Output
3
Note
In the first sample, x = 2999999 ⋅ 43 ⋅ 2999957 and one of the maximum good subsets is { 43, 2999957, 2999999 }.
In the second sample, x = 2 ⋅ 3 ⋅ 2 ⋅ 3 ⋅ 2 ⋅ 2 = 144 and one of the maximum good subsets is { 9, 12, 16 }.
样例
3
2999999 43 2999957
3
</p>