#D7205. Kleene Inversion

    ID: 5983 Type: Default 2000ms 1073MiB

Kleene Inversion

Kleene Inversion

We have a sequence of N integers A~=~A_0,~A_1,~...,~A_{N - 1}.

Let B be a sequence of K \times N integers obtained by concatenating K copies of A. For example, if A~=~1,~3,~2 and K~=~2, B~=~1,~3,~2,~1,~3,~2.

Find the inversion number of B, modulo 10^9 + 7.

Here the inversion number of B is defined as the number of ordered pairs of integers (i,~j)~(0 \leq i < j \leq K \times N - 1) such that B_i > B_j.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 2000
  • 1 \leq K \leq 10^9
  • 1 \leq A_i \leq 2000

Input

Input is given from Standard Input in the following format:

N K A_0 A_1 ... A_{N - 1}

Output

Print the inversion number of B, modulo 10^9 + 7.

Examples

Input

2 2 2 1

Output

3

Input

3 5 1 1 1

Output

0

Input

10 998244353 10 9 8 7 5 6 3 4 2 1

Output

185297239

inputFormat

input are integers.

  • 1 \leq N \leq 2000
  • 1 \leq K \leq 10^9
  • 1 \leq A_i \leq 2000

Input

Input is given from Standard Input in the following format:

N K A_0 A_1 ... A_{N - 1}

outputFormat

Output

Print the inversion number of B, modulo 10^9 + 7.

Examples

Input

2 2 2 1

Output

3

Input

3 5 1 1 1

Output

0

Input

10 998244353 10 9 8 7 5 6 3 4 2 1

Output

185297239

样例

2 2
2 1
3