#D7096. World of Darkraft: Battle for Azathoth

    ID: 5894 Type: Default 2000ms 512MiB

World of Darkraft: Battle for Azathoth

World of Darkraft: Battle for Azathoth

Roma is playing a new expansion for his favorite game World of Darkraft. He made a new character and is going for his first grind.

Roma has a choice to buy exactly one of n different weapons and exactly one of m different armor sets. Weapon i has attack modifier a_i and is worth ca_i coins, and armor set j has defense modifier b_j and is worth cb_j coins.

After choosing his equipment Roma can proceed to defeat some monsters. There are p monsters he can try to defeat. Monster k has defense x_k, attack y_k and possesses z_k coins. Roma can defeat a monster if his weapon's attack modifier is larger than the monster's defense, and his armor set's defense modifier is larger than the monster's attack. That is, a monster k can be defeated with a weapon i and an armor set j if a_i > x_k and b_j > y_k. After defeating the monster, Roma takes all the coins from them. During the grind, Roma can defeat as many monsters as he likes. Monsters do not respawn, thus each monster can be defeated at most one.

Thanks to Roma's excessive donations, we can assume that he has an infinite amount of in-game currency and can afford any of the weapons and armor sets. Still, he wants to maximize the profit of the grind. The profit is defined as the total coins obtained from all defeated monsters minus the cost of his equipment. Note that Roma must purchase a weapon and an armor set even if he can not cover their cost with obtained coins.

Help Roma find the maximum profit of the grind.

Input

The first line contains three integers n, m, and p (1 ≤ n, m, p ≤ 2 ⋅ 10^5) — the number of available weapons, armor sets and monsters respectively.

The following n lines describe available weapons. The i-th of these lines contains two integers a_i and ca_i (1 ≤ a_i ≤ 10^6, 1 ≤ ca_i ≤ 10^9) — the attack modifier and the cost of the weapon i.

The following m lines describe available armor sets. The j-th of these lines contains two integers b_j and cb_j (1 ≤ b_j ≤ 10^6, 1 ≤ cb_j ≤ 10^9) — the defense modifier and the cost of the armor set j.

The following p lines describe monsters. The k-th of these lines contains three integers x_k, y_k, z_k (1 ≤ x_k, y_k ≤ 10^6, 1 ≤ z_k ≤ 10^3) — defense, attack and the number of coins of the monster k.

Output

Print a single integer — the maximum profit of the grind.

Example

Input

2 3 3 2 3 4 7 2 4 3 2 5 11 1 2 4 2 1 6 3 4 6

Output

1

inputFormat

Input

The first line contains three integers n, m, and p (1 ≤ n, m, p ≤ 2 ⋅ 10^5) — the number of available weapons, armor sets and monsters respectively.

The following n lines describe available weapons. The i-th of these lines contains two integers a_i and ca_i (1 ≤ a_i ≤ 10^6, 1 ≤ ca_i ≤ 10^9) — the attack modifier and the cost of the weapon i.

The following m lines describe available armor sets. The j-th of these lines contains two integers b_j and cb_j (1 ≤ b_j ≤ 10^6, 1 ≤ cb_j ≤ 10^9) — the defense modifier and the cost of the armor set j.

The following p lines describe monsters. The k-th of these lines contains three integers x_k, y_k, z_k (1 ≤ x_k, y_k ≤ 10^6, 1 ≤ z_k ≤ 10^3) — defense, attack and the number of coins of the monster k.

outputFormat

Output

Print a single integer — the maximum profit of the grind.

Example

Input

2 3 3 2 3 4 7 2 4 3 2 5 11 1 2 4 2 1 6 3 4 6

Output

1

样例

2 3 3
2 3
4 7
2 4
3 2
5 11
1 2 4
2 1 6
3 4 6
1

</p>