#D6933. Folia

    ID: 5764 Type: Default 2000ms 1073MiB

Folia

Folia

Given is an integer sequence of length N+1: A_0, A_1, A_2, \ldots, A_N. Is there a binary tree of depth N such that, for each d = 0, 1, \ldots, N, there are exactly A_d leaves at depth d? If such a tree exists, print the maximum possible number of vertices in such a tree; otherwise, print -1.

Constraints

  • 0 \leq N \leq 10^5
  • 0 \leq A_i \leq 10^{8} (0 \leq i \leq N)
  • A_N \geq 1
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N A_0 A_1 A_2 \cdots A_N

Output

Print the answer as an integer.

Examples

Input

3 0 1 1 2

Output

7

Input

4 0 0 1 0 2

Output

10

Input

2 0 3 1

Output

-1

Input

1 1 1

Output

-1

Input

10 0 0 1 1 2 3 5 8 13 21 34

Output

264

inputFormat

input are integers.

Input

Input is given from Standard Input in the following format:

N A_0 A_1 A_2 \cdots A_N

outputFormat

Output

Print the answer as an integer.

Examples

Input

3 0 1 1 2

Output

7

Input

4 0 0 1 0 2

Output

10

Input

2 0 3 1

Output

-1

Input

1 1 1

Output

-1

Input

10 0 0 1 1 2 3 5 8 13 21 34

Output

264

样例

4
0 0 1 0 2
10