#D6594. Xor Permutations
Xor Permutations
Xor Permutations
Toad Mikhail has an array of 2^k integers a_1, a_2, …, a_{2^k}.
Find two permutations p and q of integers 0, 1, …, 2^k-1, such that a_i is equal to p_i ⊕ q_i for all possible i, or determine there are no such permutations. Here ⊕ denotes the bitwise XOR operation.
Input
The first line contains one integer k (2 ≤ k ≤ 12), denoting that the size of the array is 2^k.
The next line contains 2^k space-separated integers a_1, a_2, …, a_{2^k} (0 ≤ a_i < 2^k) — the elements of the given array.
Output
If the given array can't be represented as element-wise XOR of two permutations of integers 0, 1, …, 2^k-1, print "Fou".
Otherwise, print "Shi" in the first line.
The next two lines should contain the description of two suitable permutations. The first of these lines should contain 2^k space-separated distinct integers p_{1}, p_{2}, …, p_{2^k}, and the second line should contain 2^k space-separated distinct integers q_{1}, q_{2}, …, q_{2^k}.
All elements of p and q should be between 0 and 2^k - 1, inclusive; p_i ⊕ q_i should be equal to a_i for all i such that 1 ≤ i ≤ 2^k. If there are several possible solutions, you can print any.
Examples
Input
2 0 1 2 3
Output
Shi 2 0 1 3 2 1 3 0
Input
2 0 0 0 0
Output
Shi 0 1 2 3 0 1 2 3
Input
2 0 1 2 2
Output
Fou
inputFormat
Input
The first line contains one integer k (2 ≤ k ≤ 12), denoting that the size of the array is 2^k.
The next line contains 2^k space-separated integers a_1, a_2, …, a_{2^k} (0 ≤ a_i < 2^k) — the elements of the given array.
outputFormat
Output
If the given array can't be represented as element-wise XOR of two permutations of integers 0, 1, …, 2^k-1, print "Fou".
Otherwise, print "Shi" in the first line.
The next two lines should contain the description of two suitable permutations. The first of these lines should contain 2^k space-separated distinct integers p_{1}, p_{2}, …, p_{2^k}, and the second line should contain 2^k space-separated distinct integers q_{1}, q_{2}, …, q_{2^k}.
All elements of p and q should be between 0 and 2^k - 1, inclusive; p_i ⊕ q_i should be equal to a_i for all i such that 1 ≤ i ≤ 2^k. If there are several possible solutions, you can print any.
Examples
Input
2 0 1 2 3
Output
Shi 2 0 1 3 2 1 3 0
Input
2 0 0 0 0
Output
Shi 0 1 2 3 0 1 2 3
Input
2 0 1 2 2
Output
Fou
样例
2
0 1 2 2
Fou
</p>