#D6374. Two Currencies

    ID: 5295 Type: Default 2000ms 1073MiB

Two Currencies

Two Currencies

There are N cities numbered 1 to N, connected by M railroads.

You are now at City 1, with 10^{100} gold coins and S silver coins in your pocket.

The i-th railroad connects City U_i and City V_i bidirectionally, and a one-way trip costs A_i silver coins and takes B_i minutes. You cannot use gold coins to pay the fare.

There is an exchange counter in each city. At the exchange counter in City i, you can get C_i silver coins for 1 gold coin. The transaction takes D_i minutes for each gold coin you give. You can exchange any number of gold coins at each exchange counter.

For each t=2, ..., N, find the minimum time needed to travel from City 1 to City t. You can ignore the time spent waiting for trains.

Constraints

  • 2 \leq N \leq 50
  • N-1 \leq M \leq 100
  • 0 \leq S \leq 10^9
  • 1 \leq A_i \leq 50
  • 1 \leq B_i,C_i,D_i \leq 10^9
  • 1 \leq U_i < V_i \leq N
  • There is no pair i, j(i \neq j) such that (U_i,V_i)=(U_j,V_j).
  • Each city t=2,...,N can be reached from City 1 with some number of railroads.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N M S U_1 V_1 A_1 B_1 : U_M V_M A_M B_M C_1 D_1 : C_N D_N

Output

For each t=2, ..., N in this order, print a line containing the minimum time needed to travel from City 1 to City t.

Examples

Input

3 2 1 1 2 1 2 1 3 2 4 1 11 1 2 2 5

Output

2 14

Input

4 4 1 1 2 1 5 1 3 4 4 2 4 2 2 3 4 1 1 3 1 3 1 5 2 6 4

Output

5 5 7

Input

6 5 1 1 2 1 1 1 3 2 1 2 4 5 1 3 5 11 1 1 6 50 1 1 10000 1 3000 1 700 1 100 1 1 100 1

Output

1 9003 14606 16510 16576

Input

4 6 1000000000 1 2 50 1 1 3 50 5 1 4 50 7 2 3 50 2 2 4 50 4 3 4 50 3 10 2 4 4 5 5 7 7

Output

1 3 5

Input

2 1 0 1 2 1 1 1 1000000000 1 1

Output

1000000001

inputFormat

input are integers.

Input

Input is given from Standard Input in the following format:

N M S U_1 V_1 A_1 B_1 : U_M V_M A_M B_M C_1 D_1 : C_N D_N

outputFormat

Output

For each t=2, ..., N in this order, print a line containing the minimum time needed to travel from City 1 to City t.

Examples

Input

3 2 1 1 2 1 2 1 3 2 4 1 11 1 2 2 5

Output

2 14

Input

4 4 1 1 2 1 5 1 3 4 4 2 4 2 2 3 4 1 1 3 1 3 1 5 2 6 4

Output

5 5 7

Input

6 5 1 1 2 1 1 1 3 2 1 2 4 5 1 3 5 11 1 1 6 50 1 1 10000 1 3000 1 700 1 100 1 1 100 1

Output

1 9003 14606 16510 16576

Input

4 6 1000000000 1 2 50 1 1 3 50 5 1 4 50 7 2 3 50 2 2 4 50 4 3 4 50 3 10 2 4 4 5 5 7 7

Output

1 3 5

Input

2 1 0 1 2 1 1 1 1000000000 1 1

Output

1000000001

样例

2 1 0
1 2 1 1
1 1000000000
1 1
1000000001