#D6004. Pythagorean Triples

    ID: 4992 Type: Default 2000ms 256MiB

Pythagorean Triples

Pythagorean Triples

A Pythagorean triple is a triple of integer numbers (a, b, c) such that it is possible to form a right triangle with the lengths of the first cathetus, the second cathetus and the hypotenuse equal to a, b and c, respectively. An example of the Pythagorean triple is (3, 4, 5).

Vasya studies the properties of right triangles, and he uses a formula that determines if some triple of integers is Pythagorean. Unfortunately, he has forgotten the exact formula; he remembers only that the formula was some equation with squares. So, he came up with the following formula: c = a^2 - b.

Obviously, this is not the right formula to check if a triple of numbers is Pythagorean. But, to Vasya's surprise, it actually worked on the triple (3, 4, 5): 5 = 3^2 - 4, so, according to Vasya's formula, it is a Pythagorean triple.

When Vasya found the right formula (and understood that his formula is wrong), he wondered: how many are there triples of integers (a, b, c) with 1 ≤ a ≤ b ≤ c ≤ n such that they are Pythagorean both according to his formula and the real definition? He asked you to count these triples.

Input

The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.

Each test case consists of one line containing one integer n (1 ≤ n ≤ 10^9).

Output

For each test case, print one integer — the number of triples of integers (a, b, c) with 1 ≤ a ≤ b ≤ c ≤ n such that they are Pythagorean according both to the real definition and to the formula Vasya came up with.

Example

Input

3 3 6 9

Output

0 1 1

Note

The only Pythagorean triple satisfying c = a^2 - b with 1 ≤ a ≤ b ≤ c ≤ 9 is (3, 4, 5); that's why the answer for n = 3 is 0, and the answer for n = 6 (and for n = 9) is 1.

inputFormat

Input

The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.

Each test case consists of one line containing one integer n (1 ≤ n ≤ 10^9).

outputFormat

Output

For each test case, print one integer — the number of triples of integers (a, b, c) with 1 ≤ a ≤ b ≤ c ≤ n such that they are Pythagorean according both to the real definition and to the formula Vasya came up with.

Example

Input

3 3 6 9

Output

0 1 1

Note

The only Pythagorean triple satisfying c = a^2 - b with 1 ≤ a ≤ b ≤ c ≤ 9 is (3, 4, 5); that's why the answer for n = 3 is 0, and the answer for n = 6 (and for n = 9) is 1.

样例

3
3
6
9

0 1 1

</p>