#D5706. binary
binary
binary
Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2^x + p, where x is a non-negative integer.
For example, some -9-binary ("minus nine" binary) numbers are: -8 (minus eight), 7 and 1015 (-8=2^0-9, 7=2^4-9, 1015=2^{10}-9).
The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.
For example, if p=0 we can represent 7 as 2^0 + 2^1 + 2^2.
And if p=-9 we can represent 7 as one number (2^4-9).
Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).
Input
The only line contains two integers n and p (1 ≤ n ≤ 10^9, -1000 ≤ p ≤ 1000).
Output
If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer -1. Otherwise, print the smallest possible number of summands.
Examples
Input
24 0
Output
2
Input
24 1
Output
3
Input
24 -1
Output
4
Input
4 -7
Output
2
Input
1 1
Output
-1
Note
0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24 = (2^4 + 0) + (2^3 + 0).
In the second sample case, we can represent 24 = (2^4 + 1) + (2^2 + 1) + (2^0 + 1).
In the third sample case, we can represent 24 = (2^4 - 1) + (2^2 - 1) + (2^2 - 1) + (2^2 - 1). Note that repeated summands are allowed.
In the fourth sample case, we can represent 4 = (2^4 - 7) + (2^1 - 7). Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
inputFormat
Input
The only line contains two integers n and p (1 ≤ n ≤ 10^9, -1000 ≤ p ≤ 1000).
outputFormat
Output
If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer -1. Otherwise, print the smallest possible number of summands.
Examples
Input
24 0
Output
2
Input
24 1
Output
3
Input
24 -1
Output
4
Input
4 -7
Output
2
Input
1 1
Output
-1
Note
0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24 = (2^4 + 0) + (2^3 + 0).
In the second sample case, we can represent 24 = (2^4 + 1) + (2^2 + 1) + (2^0 + 1).
In the third sample case, we can represent 24 = (2^4 - 1) + (2^2 - 1) + (2^2 - 1) + (2^2 - 1). Note that repeated summands are allowed.
In the fourth sample case, we can represent 4 = (2^4 - 7) + (2^1 - 7). Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
样例
24 0
2
</p>