#D5238. Lomsat gelral

    ID: 4354 Type: Default 2000ms 256MiB

Lomsat gelral

Lomsat gelral

You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour.

Let's call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c. So it's possible that two or more colours will be dominating in the subtree of some vertex.

The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.

For each vertex v find the sum of all dominating colours in the subtree of vertex v.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

Output

Print n integers — the sums of dominating colours for each vertex.

Examples

Input

4 1 2 3 4 1 2 2 3 2 4

Output

10 9 3 4

Input

15 1 2 3 1 2 3 3 1 1 3 2 2 1 2 3 1 2 1 3 1 4 1 14 1 15 2 5 2 6 2 7 3 8 3 9 3 10 4 11 4 12 4 13

Output

6 5 4 3 2 3 3 1 1 3 2 2 1 2 3

inputFormat

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

outputFormat

Output

Print n integers — the sums of dominating colours for each vertex.

Examples

Input

4 1 2 3 4 1 2 2 3 2 4

Output

10 9 3 4

Input

15 1 2 3 1 2 3 3 1 1 3 2 2 1 2 3 1 2 1 3 1 4 1 14 1 15 2 5 2 6 2 7 3 8 3 9 3 10 4 11 4 12 4 13

Output

6 5 4 3 2 3 3 1 1 3 2 2 1 2 3

样例

4
1 2 3 4
1 2
2 3
2 4
10 9 3 4 

</p>