#D4838. Preserve Diameter

    ID: 4022 Type: Default 4000ms 1073MiB

Preserve Diameter

Preserve Diameter

We have a tree G with N vertices numbered 1 to N. The i-th edge of G connects Vertex a_i and Vertex b_i.

Consider adding zero or more edges in G, and let H be the graph resulted.

Find the number of graphs H that satisfy the following conditions, modulo 998244353.

  • H does not contain self-loops or multiple edges.
  • The diameters of G and H are equal.
  • For every pair of vertices in H that is not directly connected by an edge, the addition of an edge directly connecting them would reduce the diameter of the graph.

Constraints

  • 3 \le N \le 2 \times 10^5
  • 1 \le a_i, b_i \le N
  • The given graph is a tree.

Input

Input is given from Standard Input in the following format:

N a_1 b_1 \vdots a_{N-1} b_{N-1}

Output

Print the answer.

Examples

Input

6 1 6 2 1 5 2 3 4 2 3

Output

3

Input

3 1 2 2 3

Output

1

Input

9 1 2 2 3 4 2 1 7 6 1 2 5 5 9 6 8

Output

27

Input

19 2 4 15 8 1 16 1 3 12 19 1 18 7 11 11 15 12 9 1 6 7 14 18 2 13 12 13 5 16 13 7 1 11 10 7 17

Output

78732

inputFormat

Input

Input is given from Standard Input in the following format:

N a_1 b_1 \vdots a_{N-1} b_{N-1}

outputFormat

Output

Print the answer.

Examples

Input

6 1 6 2 1 5 2 3 4 2 3

Output

3

Input

3 1 2 2 3

Output

1

Input

9 1 2 2 3 4 2 1 7 6 1 2 5 5 9 6 8

Output

27

Input

19 2 4 15 8 1 16 1 3 12 19 1 18 7 11 11 15 12 9 1 6 7 14 18 2 13 12 13 5 16 13 7 1 11 10 7 17

Output

78732

样例

9
1 2
2 3
4 2
1 7
6 1
2 5
5 9
6 8
27