#D4838. Preserve Diameter
Preserve Diameter
Preserve Diameter
We have a tree G with N vertices numbered 1 to N. The i-th edge of G connects Vertex a_i and Vertex b_i.
Consider adding zero or more edges in G, and let H be the graph resulted.
Find the number of graphs H that satisfy the following conditions, modulo 998244353.
- H does not contain self-loops or multiple edges.
- The diameters of G and H are equal.
- For every pair of vertices in H that is not directly connected by an edge, the addition of an edge directly connecting them would reduce the diameter of the graph.
Constraints
- 3 \le N \le 2 \times 10^5
- 1 \le a_i, b_i \le N
- The given graph is a tree.
Input
Input is given from Standard Input in the following format:
N a_1 b_1 \vdots a_{N-1} b_{N-1}
Output
Print the answer.
Examples
Input
6 1 6 2 1 5 2 3 4 2 3
Output
3
Input
3 1 2 2 3
Output
1
Input
9 1 2 2 3 4 2 1 7 6 1 2 5 5 9 6 8
Output
27
Input
19 2 4 15 8 1 16 1 3 12 19 1 18 7 11 11 15 12 9 1 6 7 14 18 2 13 12 13 5 16 13 7 1 11 10 7 17
Output
78732
inputFormat
Input
Input is given from Standard Input in the following format:
N a_1 b_1 \vdots a_{N-1} b_{N-1}
outputFormat
Output
Print the answer.
Examples
Input
6 1 6 2 1 5 2 3 4 2 3
Output
3
Input
3 1 2 2 3
Output
1
Input
9 1 2 2 3 4 2 1 7 6 1 2 5 5 9 6 8
Output
27
Input
19 2 4 15 8 1 16 1 3 12 19 1 18 7 11 11 15 12 9 1 6 7 14 18 2 13 12 13 5 16 13 7 1 11 10 7 17
Output
78732
样例
9
1 2
2 3
4 2
1 7
6 1
2 5
5 9
6 8
27