#D4318. Sliding GCD
Sliding GCD
Sliding GCD
Sliding GCD
Problem Statement
For the set S of natural numbers, let f (S) be the number of elements in the set \ {GCD (T) | T ⊆ S, T is not empty \}.
Here, GCD (T) is the greatest integer that divides all the numbers contained in T. In particular, note that GCD (\ {a \}) = a when T consists of only one integer a.
Find f (\ {i, i + 1, ..., i + W --1 \}) for i = 1, 2, ..., N --W + 1.
Constraints
- 1 ≤ W ≤ N ≤ 10 ^ 5
Input
Input follows the following format. All given numbers are integers.
N W
Output
The value of f (\ {i, i + 1, ..., i + W-1 \}) when i = 1, 2, ..., N-W + 1 is separated by a space. Print on a line.
Examples
Input
10 2
Output
2 3 3 3 3 3 3 3 3
Input
30 7
Output
7 8 9 10 10 11 11 11 11 12 11 12 10 12 12 11 10 12 12 12 10 11 11 13
inputFormat
Input
Input follows the following format. All given numbers are integers.
N W
outputFormat
Output
The value of f (\ {i, i + 1, ..., i + W-1 \}) when i = 1, 2, ..., N-W + 1 is separated by a space. Print on a line.
Examples
Input
10 2
Output
2 3 3 3 3 3 3 3 3
Input
30 7
Output
7 8 9 10 10 11 11 11 11 12 11 12 10 12 12 11 10 12 12 12 10 11 11 13
样例
10 2
2 3 3 3 3 3 3 3 3