#D4105. Maximum Sum
Maximum Sum
Maximum Sum
problem
Given a sequence of n integers a1, a2, ..., an and a positive integer k (1 ≤ k ≤ n), then the sum of k consecutive integers Si = ai + ai + Create a program that outputs the maximum value of 1 + ... + ai + k-1 (1 ≤ i ≤ n --k + 1).
input
The input consists of multiple datasets. Each dataset is given in the following format. The input ends on a line containing two zeros.
On the first line, the positive integer n (1 ≤ n ≤ 100000) and the positive integer k (1 ≤ k ≤ n) are written in this order, separated by blanks. The first + i lines after the second line. (1 ≤ i ≤ n) contains the i-th term ai (-10000 ≤ ai ≤ 10000) in the sequence. Of the scoring data, 60% of the points are n ≤ 5000, k ≤ 1000. Meet.
The number of datasets does not exceed 5.
output
The maximum value of Si is output to one line for each data set.
Examples
Input
5 3 2 5 -4 10 3 0 0
Output
11
Input
None
Output
None
inputFormat
outputFormat
outputs the maximum value of 1 + ... + ai + k-1 (1 ≤ i ≤ n --k + 1).
input
The input consists of multiple datasets. Each dataset is given in the following format. The input ends on a line containing two zeros.
On the first line, the positive integer n (1 ≤ n ≤ 100000) and the positive integer k (1 ≤ k ≤ n) are written in this order, separated by blanks. The first + i lines after the second line. (1 ≤ i ≤ n) contains the i-th term ai (-10000 ≤ ai ≤ 10000) in the sequence. Of the scoring data, 60% of the points are n ≤ 5000, k ≤ 1000. Meet.
The number of datasets does not exceed 5.
output
The maximum value of Si is output to one line for each data set.
Examples
Input
5 3 2 5 -4 10 3 0 0
Output
11
Input
None
Output
None
样例
5 3
2
5
-4
10
3
0 0
11