#D3834. Mateusz and an Infinite Sequence
Mateusz and an Infinite Sequence
Mateusz and an Infinite Sequence
A Thue-Morse-Radecki-Mateusz sequence (Thorse-Radewoosh sequence in short) is an infinite sequence constructed from a finite sequence gen of length d and an integer m, obtained in the following sequence of steps:
- In the beginning, we define the one-element sequence M_0=(0).
- In the k-th step, k ≥ 1, we define the sequence M_k to be the concatenation of the d copies of M_{k-1}. However, each of them is altered slightly — in the i-th of them (1 ≤ i ≤ d), each element x is changed to (x+gen_i) \pmod{m}.
For instance, if we pick gen = (0, \color{blue}{1}, \color{green}{2}) and m = 4:
- M_0 = (0),
- M_1 = (0, \color{blue}{1}, \color{green}{2}),
- M_2 = (0, 1, 2, \color{blue}{1, 2, 3}, \color{green}{2, 3, 0}),
- M_3 = (0, 1, 2, 1, 2, 3, 2, 3, 0, \color{blue}{1, 2, 3, 2, 3, 0, 3, 0, 1}, \color{green}{2, 3, 0, 3, 0, 1, 0, 1, 2}), and so on.
As you can see, as long as the first element of gen is 0, each consecutive step produces a sequence whose prefix is the sequence generated in the previous step. Therefore, we can define the infinite Thorse-Radewoosh sequence M_∞ as the sequence obtained by applying the step above indefinitely. For the parameters above, M_∞ = (0, 1, 2, 1, 2, 3, 2, 3, 0, 1, 2, 3, 2, 3, 0, 3, 0, 1, ...).
Mateusz picked a sequence gen and an integer m, and used them to obtain a Thorse-Radewoosh sequence M_∞. He then picked two integers l, r, and wrote down a subsequence of this sequence A := ((M_∞)l, (M∞){l+1}, ..., (M∞)_r).
Note that we use the 1-based indexing both for M_∞ and A.
Mateusz has his favorite sequence B with length n, and would like to see how large it is compared to A. Let's say that B majorizes sequence X of length n (let's denote it as B ≥ X) if and only if for all i ∈ {1, 2, ..., n}, we have B_i ≥ X_i.
He now asks himself how many integers x in the range [1, |A| - n + 1] there are such that B ≥ (A_x, A_{x+1}, A_{x+2}, ..., A_{x+n-1}). As both sequences were huge, answering the question using only his pen and paper turned out to be too time-consuming. Can you help him automate his research?
Input
The first line contains two integers d and m (2 ≤ d ≤ 20, 2 ≤ m ≤ 60) — the length of the sequence gen and an integer used to perform the modular operations. The second line contains d integers gen_i (0 ≤ gen_i < m). It's guaranteed that the first element of the sequence gen is equal to zero.
The third line contains one integer n (1 ≤ n ≤ 30000) — the length of the sequence B. The fourth line contains n integers B_i (0 ≤ B_i < m). The fifth line contains two integers l and r (1 ≤ l ≤ r ≤ 10^{18}, r-l+1 ≥ n).
Output
Print a single integer — the answer to the problem.
Examples
Input
2 2 0 1 4 0 1 1 0 2 21
Output
6
Input
3 4 0 1 2 2 0 2 6 11
Output
1
Note
Thorse-Radewoosh sequence in the first example is the standard Thue-Morse sequence, so the sequence A is as follows: 11010011001011010010. Here are the places where the sequence B majorizes A:
inputFormat
Input
The first line contains two integers d and m (2 ≤ d ≤ 20, 2 ≤ m ≤ 60) — the length of the sequence gen and an integer used to perform the modular operations. The second line contains d integers gen_i (0 ≤ gen_i < m). It's guaranteed that the first element of the sequence gen is equal to zero.
The third line contains one integer n (1 ≤ n ≤ 30000) — the length of the sequence B. The fourth line contains n integers B_i (0 ≤ B_i < m). The fifth line contains two integers l and r (1 ≤ l ≤ r ≤ 10^{18}, r-l+1 ≥ n).
outputFormat
Output
Print a single integer — the answer to the problem.
Examples
Input
2 2 0 1 4 0 1 1 0 2 21
Output
6
Input
3 4 0 1 2 2 0 2 6 11
Output
1
Note
Thorse-Radewoosh sequence in the first example is the standard Thue-Morse sequence, so the sequence A is as follows: 11010011001011010010. Here are the places where the sequence B majorizes A:
样例
3 4
0 1 2
2
0 2
6 11
1
</p>