#D3779. Sum Difference
Sum Difference
Sum Difference
We have an integer sequence A of length N, where A_1 = X, A_{i+1} = A_i + D (1 \leq i < N ) holds.
Takahashi will take some (possibly all or none) of the elements in this sequence, and Aoki will take all of the others.
Let S and T be the sum of the numbers taken by Takahashi and Aoki, respectively. How many possible values of S - T are there?
Constraints
- -10^8 \leq X, D \leq 10^8
- 1 \leq N \leq 2 \times 10^5
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N X D
Output
Print the number of possible values of S - T.
Examples
Input
3 4 2
Output
8
Input
2 3 -3
Output
2
Input
100 14 20
Output
49805
inputFormat
input are integers.
Input
Input is given from Standard Input in the following format:
N X D
outputFormat
Output
Print the number of possible values of S - T.
Examples
Input
3 4 2
Output
8
Input
2 3 -3
Output
2
Input
100 14 20
Output
49805
样例
2 3 -3
2