#D3768. Permutation and Minimum

    ID: 3126 Type: Default 3000ms 1073MiB

Permutation and Minimum

Permutation and Minimum

There is a sequence of length 2N: A_1, A_2, ..., A_{2N}. Each A_i is either -1 or an integer between 1 and 2N (inclusive). Any integer other than -1 appears at most once in {A_i}.

For each i such that A_i = -1, Snuke replaces A_i with an integer between 1 and 2N (inclusive), so that {A_i} will be a permutation of 1, 2, ..., 2N. Then, he finds a sequence of length N, B_1, B_2, ..., B_N, as B_i = min(A_{2i-1}, A_{2i}).

Find the number of different sequences that B_1, B_2, ..., B_N can be, modulo 10^9 + 7.

Constraints

  • 1 \leq N \leq 300
  • A_i = -1 or 1 \leq A_i \leq 2N.
  • If A_i \neq -1, A_j \neq -1, then A_i \neq A_j. (i \neq j)

Input

Input is given from Standard Input in the following format:

N A_1 A_2 ... A_{2N}

Output

Print the number of different sequences that B_1, B_2, ..., B_N can be, modulo 10^9 + 7.

Examples

Input

3 1 -1 -1 3 6 -1

Output

5

Input

4 7 1 8 3 5 2 6 4

Output

1

Input

10 7 -1 -1 -1 -1 -1 -1 6 14 12 13 -1 15 -1 -1 -1 -1 20 -1 -1

Output

9540576

Input

20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 -1 -1 31 -1 -1 -1 -1 -1 -1 -1 -1

Output

374984201

inputFormat

Input

Input is given from Standard Input in the following format:

N A_1 A_2 ... A_{2N}

outputFormat

Output

Print the number of different sequences that B_1, B_2, ..., B_N can be, modulo 10^9 + 7.

Examples

Input

3 1 -1 -1 3 6 -1

Output

5

Input

4 7 1 8 3 5 2 6 4

Output

1

Input

10 7 -1 -1 -1 -1 -1 -1 6 14 12 13 -1 15 -1 -1 -1 -1 20 -1 -1

Output

9540576

Input

20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 34 -1 -1 -1 -1 31 -1 -1 -1 -1 -1 -1 -1 -1

Output

374984201

样例

3
1 -1 -1 3 6 -1
5