#D3573. Switch and Flip
Switch and Flip
Switch and Flip
There are n coins labeled from 1 to n. Initially, coin c_i is on position i and is facing upwards ((c_1, c_2, ..., c_n) is a permutation of numbers from 1 to n). You can do some operations on these coins.
In one operation, you can do the following:
-
Choose 2 distinct indices i and j.
-
Then, swap the coins on positions i and j.
-
Then, flip both coins on positions i and j. (If they are initially faced up, they will be faced down after the operation and vice versa)
Construct a sequence of at most n+1 operations such that after performing all these operations the coin i will be on position i at the end, facing up.
Note that you do not need to minimize the number of operations.
Input
The first line contains an integer n (3 ≤ n ≤ 2 ⋅ 10^5) — the number of coins.
The second line contains n integers c_1,c_2,...,c_n (1 ≤ c_i ≤ n, c_i ≠ c_j for i≠ j).
Output
In the first line, output an integer q (0 ≤ q ≤ n+1) — the number of operations you used.
In the following q lines, output two integers i and j (1 ≤ i, j ≤ n, i ≠ j) — the positions you chose for the current operation.
Examples
Input
3 2 1 3
Output
3 1 3 3 2 3 1
Input
5 1 2 3 4 5
Output
0
Note
Let coin i facing upwards be denoted as i and coin i facing downwards be denoted as -i.
The series of moves performed in the first sample changes the coins as such:
- [~~~2,~~~1,~~~3]
- [-3,~~~1,-2]
- [-3,~~~2,-1]
- [~~~1,~~~2,~~~3]
In the second sample, the coins are already in their correct positions so there is no need to swap.
inputFormat
Input
The first line contains an integer n (3 ≤ n ≤ 2 ⋅ 10^5) — the number of coins.
The second line contains n integers c_1,c_2,...,c_n (1 ≤ c_i ≤ n, c_i ≠ c_j for i≠ j).
outputFormat
Output
In the first line, output an integer q (0 ≤ q ≤ n+1) — the number of operations you used.
In the following q lines, output two integers i and j (1 ≤ i, j ≤ n, i ≠ j) — the positions you chose for the current operation.
Examples
Input
3 2 1 3
Output
3 1 3 3 2 3 1
Input
5 1 2 3 4 5
Output
0
Note
Let coin i facing upwards be denoted as i and coin i facing downwards be denoted as -i.
The series of moves performed in the first sample changes the coins as such:
- [~~~2,~~~1,~~~3]
- [-3,~~~1,-2]
- [-3,~~~2,-1]
- [~~~1,~~~2,~~~3]
In the second sample, the coins are already in their correct positions so there is no need to swap.
样例
5
1 2 3 4 5
0
</p>