#D321. Frog Jumping
Frog Jumping
Frog Jumping
A frog is initially at position 0 on the number line. The frog has two positive integers a and b. From a position k, it can either jump to position k+a or k-b.
Let f(x) be the number of distinct integers the frog can reach if it never jumps on an integer outside the interval [0, x]. The frog doesn't need to visit all these integers in one trip, that is, an integer is counted if the frog can somehow reach it if it starts from 0.
Given an integer m, find ∑_{i=0}^{m} f(i). That is, find the sum of all f(i) for i from 0 to m.
Input
The first line contains three integers m, a, b (1 ≤ m ≤ 10^9, 1 ≤ a,b ≤ 10^5).
Output
Print a single integer, the desired sum.
Examples
Input
7 5 3
Output
19
Input
1000000000 1 2019
Output
500000001500000001
Input
100 100000 1
Output
101
Input
6 4 5
Output
10
Note
In the first example, we must find f(0)+f(1)+…+f(7). We have f(0) = 1, f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, f(5) = 3, f(6) = 3, f(7) = 8. The sum of these values is 19.
In the second example, we have f(i) = i+1, so we want to find ∑_{i=0}^{10^9} i+1.
In the third example, the frog can't make any jumps in any case.
inputFormat
Input
The first line contains three integers m, a, b (1 ≤ m ≤ 10^9, 1 ≤ a,b ≤ 10^5).
outputFormat
Output
Print a single integer, the desired sum.
Examples
Input
7 5 3
Output
19
Input
1000000000 1 2019
Output
500000001500000001
Input
100 100000 1
Output
101
Input
6 4 5
Output
10
Note
In the first example, we must find f(0)+f(1)+…+f(7). We have f(0) = 1, f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, f(5) = 3, f(6) = 3, f(7) = 8. The sum of these values is 19.
In the second example, we have f(i) = i+1, so we want to find ∑_{i=0}^{10^9} i+1.
In the third example, the frog can't make any jumps in any case.
样例
1000000000 1 2019
500000001500000001
</p>