#D2439. Maximum Sine
Maximum Sine
Maximum Sine
You have given integers a, b, p, and q. Let f(x) = abs(sin(p/q π x)).
Find minimum possible integer x that maximizes f(x) where a ≤ x ≤ b.
Input
Each test contains multiple test cases.
The first line contains the number of test cases t (1 ≤ t ≤ 100) — the number of test cases.
The first line of each test case contains four integers a, b, p, and q (0 ≤ a ≤ b ≤ 10^{9}, 1 ≤ p, q ≤ 10^{9}).
Output
Print the minimum possible integer x for each test cases, separated by newline.
Example
Input
2 0 3 1 3 17 86 389 995
Output
1 55
Note
In the first test case, f(0) = 0, f(1) = f(2) ≈ 0.866, f(3) = 0.
In the second test case, f(55) ≈ 0.999969, which is the largest among all possible values.
inputFormat
Input
Each test contains multiple test cases.
The first line contains the number of test cases t (1 ≤ t ≤ 100) — the number of test cases.
The first line of each test case contains four integers a, b, p, and q (0 ≤ a ≤ b ≤ 10^{9}, 1 ≤ p, q ≤ 10^{9}).
outputFormat
Output
Print the minimum possible integer x for each test cases, separated by newline.
Example
Input
2 0 3 1 3 17 86 389 995
Output
1 55
Note
In the first test case, f(0) = 0, f(1) = f(2) ≈ 0.866, f(3) = 0.
In the second test case, f(55) ≈ 0.999969, which is the largest among all possible values.
样例
2
0 3 1 3
17 86 389 995
1
55
</p>