#D2285. Division
Division
Division
Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division.
To improve his division skills, Oleg came up with t pairs of integers p_i and q_i and for each pair decided to find the greatest integer x_i, such that:
- p_i is divisible by x_i;
- x_i is not divisible by q_i.
Oleg is really good at division and managed to find all the answers quickly, how about you?
Input
The first line contains an integer t (1 ≤ t ≤ 50) — the number of pairs.
Each of the following t lines contains two integers p_i and q_i (1 ≤ p_i ≤ 10^{18}; 2 ≤ q_i ≤ 10^{9}) — the i-th pair of integers.
Output
Print t integers: the i-th integer is the largest x_i such that p_i is divisible by x_i, but x_i is not divisible by q_i.
One can show that there is always at least one value of x_i satisfying the divisibility conditions for the given constraints.
Example
Input
3 10 4 12 6 179 822
Output
10 4 179
Note
For the first pair, where p_1 = 10 and q_1 = 4, the answer is x_1 = 10, since it is the greatest divisor of 10 and 10 is not divisible by 4.
For the second pair, where p_2 = 12 and q_2 = 6, note that
- 12 is not a valid x_2, since 12 is divisible by q_2 = 6;
- 6 is not valid x_2 as well: 6 is also divisible by q_2 = 6.
The next available divisor of p_2 = 12 is 4, which is the answer, since 4 is not divisible by 6.
inputFormat
Input
The first line contains an integer t (1 ≤ t ≤ 50) — the number of pairs.
Each of the following t lines contains two integers p_i and q_i (1 ≤ p_i ≤ 10^{18}; 2 ≤ q_i ≤ 10^{9}) — the i-th pair of integers.
outputFormat
Output
Print t integers: the i-th integer is the largest x_i such that p_i is divisible by x_i, but x_i is not divisible by q_i.
One can show that there is always at least one value of x_i satisfying the divisibility conditions for the given constraints.
Example
Input
3 10 4 12 6 179 822
Output
10 4 179
Note
For the first pair, where p_1 = 10 and q_1 = 4, the answer is x_1 = 10, since it is the greatest divisor of 10 and 10 is not divisible by 4.
For the second pair, where p_2 = 12 and q_2 = 6, note that
- 12 is not a valid x_2, since 12 is divisible by q_2 = 6;
- 6 is not valid x_2 as well: 6 is also divisible by q_2 = 6.
The next available divisor of p_2 = 12 is 4, which is the answer, since 4 is not divisible by 6.
样例
3
10 4
12 6
179 822
10
4
179
</p>